Oregonian Khatru

I was obviously in error in my previous entry, in that I said the rain was over in the Willamette Valley—it was two months almost to the day before I could find a clear moonless night to delve back into Herschel hunting.

The weekend of May 12th lived up to its forecast: two almost-perfect and inviting nights in which to try to catch up on the vast number of early-spring galaxies that I still needed to observe in Lynx, Leo, Leo Minor, Crater, Corvus, and Hydra (the Ursa Major galaxies were also numerous, but given that Ursa Major is circumpolar, there was less of a rush there). I had been following the constellations’ nightly traverse of the meridian on Sky Safari during the cloudy stretch, and knew that my quest to complete the Herschels in 2018 was going to be for naught; I would need a whole week of clear skies to even come close to getting through all these galaxies, particularly in the Leos, where I had 40 Herschel galaxies to go. This was also to say nothing of Virgo (35 remaining galaxies), which would be past the meridian after midnight in May, and the Coma/Canes regions (33 galaxies still remaining), which would be visible a bit longer due to their higher declinations.

Despite having concluded that the Herschel lists would require at least one more round of the seasons, I still intended to make as much headway as possible on the galaxies of the spring. On my last trip out, I had swept up most of the targets in Hydra and Crater that still remained, but I also had a number of objects left in Corvus in addition to a couple each in the low-south constellations I’d ostensibly finished. My plan was to finish Crater, Corvus, and Hydra, and to dig into the more-southerly Virgo galaxies (having wiped out most of the Virgo cluster last May when I mopped up all 150+ targets on Sky Atlas 2000.0‘s Chart B). And despite having my sights set on the many galaxies in eastern Leo, I would probably have to give up on most of those for the season; Leo would already be well past the meridian by the time I finished the southerly stuff that I also needed to get.

Dan B, Oggie, and Oggie’s ladyfriend had also ventured out to Eagle’s Ridge to take advantage of the clear sky and the weekend; Jerry had been fighting a nasty cold and wasn’t feeling up to the trip. And it was not long after I got set up that I was fighting my own (rather insistent) health issue.

I don’t know quite what menu item from the previous few days set me off, but given that Australopithicenes have always been lactose intolerant, it was something of a miracle that I’d made this many trips up the local mountains with nary an issue before. That luck ran out on this particular night, and the churning in my guts was audible on my voice memos as I was dictating notes on the various galaxies.

These notes are the more-narrative style I’ve used a couple of times here; I don’t intend to do them this way all the time, but they’re more readable than my standard style.

5/12-5/13/18

EAGLE’S RIDGE SPUR ROAD (43° 48′ 17.9496” N, 122° 42′ 45.6912” W)
MOON: 28 days; 4% illuminated, rose at 4:24 AM
SEEING: 8
TRANSPARENCY: 7
SQM: not checked
NELM: 6.7
WEATHER CONDITIONS: temps in low 50s, no breeze, some dew on exposed plastic elements but none on optical surfaces or telescopes

Others present: Dan B, Oggie G, Leticia

All observations: 12.5 f/5 Discovery truss-tube Dobsonian, 14mm ES 82˚ eyepiece (112x, 0.7˚ TFOV) unless otherwise noted

10:12
NGCs 3636, 3637 (Crt): These two fairly-obvious (but not super-bright) galaxies are flanking and somewhat N of a 7th-magnitude star. NGC 3636 is NP the 7th-mag star by 1.5′. It’s pretty small—0.67′ round—and has a bright core and possibly a substellar nucleus. Its halo is quite diffuse and faint; the core is the galaxy’s most notable feature. NGC 3637 is NF the 7th-mag star by 3′. It’s much bigger than 3636—1.25′ round—with a somewhat brighter core and a definite substellar nucleus. 3.25′ SF 3637 is a 13th-mag star. NP the 7th-mag star is a kite-shaped asterism; the kite’s tip is NP the 7th-mag star by 9′; the four stars in the kite shape are all 9th-mag and fainter; it’s 11′ from the southern tip of the kite to the star at the kite’s northern tip (which is N slightly F); stars are SP and SF the top star by 7′ and 6′ respectively; the dimmest star in the diamond (11th-mag) is the F-most star; the others are all 10th-magnitude. Back to the galaxies now that it’s a bit darker—the galaxies are more impressive now. N of 3637 by 7′ is a 13.5-mag star. F-most star in kite is N slightly P 3637 by 12.5′.

10:28
NGC 4024 (Crv): This is another pretty small, subtle little galaxy. It’s probably elliptical [actually a barred spiral], judging from its brightness profile. It has a small bright core and stellar nucleus; the core seems to be almost elongated slightly SP-NF. The halo is pretty diffuse, not well-defined, but small and vaguely roundish. Dimensions 1.0′ x 0.75′. There’s a Y-shaped pattern of stars P and very slightly S of the galaxy; the star on the SP of the Y is the brightest; the star on the N fork is second-brightest. The star in the middle of the ‘Y’ is faintest. The ‘Y’ star closest to the galaxy is 3.25′ from galaxy to the SP; the star at the center of the ‘Y’ is 2.5′ P the previous star and is 12th-magnitude; 2.5′ N very slightly P that last star is an 11.5-magnitude star. Back to the middle of the ‘Y’: the brightest star is S slightly P the middle star by 2′. A star between the galaxy and the closest star in the ‘Y’ is 13.5-mag and 1.5′ S very slightly P the galaxy. N of the galaxy by 3.5′ is a 12th-mag star that has a 14.5-mag companion N very slightly P by 0.67′. N very slightly P the galaxy by 18′ is the brightest star of a very small triangle (which at 9th magnitude is also the brightest in the field); to the P and SP of that star by 1.5′ are 13th-mag stars. SF the galaxy by 5′ is a double star of 13th and 14th magnitudes; the brighter component is N of the fainter by 0.25′.

10:45
NGCs 4038, 4039 (Crv): This one’s a classic—so much detail! As a whole, this object is very large. Both components are equally long (3.5′) but the N-most galaxy (4038) is almost twice as thick, 2.0′ thick across the middle. 4038 has not so much a core as a vaguely-defined “inner region”, which is much brighter and more mottled than that of 4039. This inner region makes up most of galaxy’s dimensions; 4038 much more detailed overall, with a better-defined halo, although the halo is not at all extensive. A 14th-magnitude star is 0.25′ off 4038’s NP edge and a faint star is embedded toward the galaxy’s NP end. The S galaxy (4039) is more diffuse, and about 1.25′ thick. 4039 is elongated P slightly S-F slightly N; 4038 is angled P slightly N-F slightly S; the two connect at their F ends. The notch between the two at the P end looks to be 0.5′ at widest. There’s a threshold star 1′ following point where two galaxies intersect. The whole thing reminds of a cocktail shrimp (Oggie says a fortune cookie). 5.5′ N very slightly P the N edge of 4038 is the S-most and brightest (9th magnitude) vertex of a triangle; N slightly P that star by 6.5′ is the second vertex (magnitude 11.3); the third vertex is NP by 7′ and is 11th magnitude. Just on the N slightly P edge of field (21′ from galaxies) is a 9th magnitude star. 16′ F the galaxies and very slightly N is an 11th-magnitude star; another 11th-mag star is P somewhat N that star by 6′. 5.75′ SF the point where the galaxies intersect is a double star of 13th and 14th magnitudes; components are separated SP-NF by 0.25′; the brighter component is slightly closer to the galaxies. 4.25′ due S of the S edge of 4039 is a 12th magnitude star; 5′ S very slightly P that star is a 10th magnitude star; 5′ SF that star is a 12th magnitude star with a 13.5 magnitude companion S of it by 0.75′.

11:07
NGCs 4027, 4027A (Crv): 4027: This is a very interesting galaxy. It’s elongated N-S, and quite large (2.5′ x 1.5′). Its core is irregular-shaped and offset toward the S end. The core/spiral arm is almost ‘C’ shaped starting at the S end, looping along the P edge and curling back toward the NF edge. The brightest part of the core is off to the SP quadrant. There seems to be a 14.5-magnitude star embedded in the halo in the “open area” inside the spiral arm/darker area in the halo where the arm doesn’t reach. The halo is more diffuse on the F side. There’s an occasional glimpse of another galaxy [4027A] 4′ S slightly P 4027—it comes and goes, even in averted vision. It’s impossible to determine its dimensions; it’s just a tiny faint diffuse glow. 4027 is bracketed inside a triangle of 12.5 and 13th magnitude stars; two of the stars are to the N; one is due N, one is NF and one is SF; the star to the N (which is also slightly P) is the brightest at 12.5 magnitude and is 3.5′ from the center of the galaxy; the two stars F the galaxy are equidistant from the galaxy at 3.25′ from the center of the galaxy and are both 13th magnitude. F and very slightly N of the galaxy is a mish-mash of stars; a small right triangle is closest to galaxy, followed by a pair; S slightly F that pair is a pair of brighter stars; the stars in this whole asterism range from 11th to 13th magnitude; the brightest in the group is the right-angle (NF) vertex of the triangle. P the galaxy by 7.5′ is an 11th magnitude star.

In my gastric distress, I had forgotten that I’d taken notes on NGCs 4105 and 4106 on my last excursion, and I duplicated the observation. A waste of valuable time, but there are worse ways to do so.

11:25
NGCs 4105, 4106 (Hya): [I had previously taken notes on this pair on 3/11/18] These two are almost onto the mountainside here, they’re so low. 4105 is P and very slightly N 4106. The two are separated by about 1′ core-to-core. Due S of 4105 is an 11th magnitude star that’s 2.5′ S of galaxy. The galaxy is very slightly elongated N-S, and is 1.25′ x 1.0′. It has a much more diffuse larger halo and brighter core with a substellar nucleus. 4106 is roundish, and 1.0′ round. It has a very small vaguely-defined core. A 9.5-magnitude star is NF 4106 by 14′, and is the second-brightest in the field. SP 4105 by 21′ is a 10.5-magnitude star, brightest in the field, right on the field’s edge. An arc of three stars precedes the galaxies; the middle star is brightest of the three at 12th-mag and is 7′ P very slightly N 4105; this bright star has fainter stars S (13th magnitude) and NF (12th magnitude).

Q: Does an astronomer shit in the woods?
A: He does if it’s too far to drive home and it’s an absolute biological imperative.

It was at this point that the monstrous Lovecraftian mass in my guts decided that it was sick of being put off. Fortunately, I had prepared for this eventuality (with toilet paper and plenty of hand sanitizer in the van), but the concept was still awkward and the execution even more so. Apologizing to the other observers for the need to use headlights, I drove quickly and desperately to the end of the spur road and purged the offending toxic material from my system.

I certainly felt better when I returned to my scope, despite having shot my night vision all to hell. Without having to worry about that particular problem anymore, I was able to more fully concentrate on my observing for the rest of the night, even if that night was shortened by the whole mess. (It took just over an hour between sets of notes to deal with the issue.) But I was able to finish out Hydra regardless.

12:27
NGC 5078, IC 879, IC 874, NGC 5101 (Hya)—We’re pushing the horizon now. 5078 is definitely an inclined spiral, elongated NP-SF. It’s about 2.0′ x 0.75′, and quite bright, with a substellar nucleus and a small core that’s not that much brighter than the halo. This is an interesting galaxy with “something going on” that is hard to discern; it has an odd appearance somehow, as if the brightening one would expect along it’s length isn’t there—a dust lane? SP 5078 by 2.5′ is an indeterminate glow [IC 879] that’s hard to see in direct vision, sometimes fleeting in direct and better in averted vision. In the starfield due F 5078 by 9′ is an 8th-magnitude star; a 9th-magnitude star is 10′ N of the 8th-magnitude star; there’s a pair F slightly S the 8th-magnitude star by 7′; the southern of the pair is the brighter (9.5 and 11th magnitudes), and they’re separated N-S by 1.5′. NF 5078 by 4′ is a 12th-magnitude star. Due N of the galaxy by 8.5′ is a 13th-magnitude star. 17′ S very slightly F the galaxy is a 10.5-magnitude star. P slightly S of the galaxy by 7.5′ is a 10.5-magnitude star. 17′ SP are a pair of equally-spaced, equally-bright double stars; the dimmer component of each is separated by 3.5′; each pair is separated by 0.75′; S of the S-most of the pair by 2.5′ is another galaxy [IC 874]. This is quite faint and smallish (0.75′ round). It has a somewhat brighter core and a tiny faint stellar nucleus. This galaxy is very diffuse and difficult to see. 18′ F very slightly S of the 8th-magnitude star that’s due F 5078 is another galaxy [5101]. This one is 23′ from 5078. It’s longish—1.75′ x 1.25’—and elongated P very slightly N-F very slightly S. It’s slightly brighter than 5078, with a bright core and a faint stellar nucleus. It has a diffuse but well-defined halo. Due P 5101 by 0.75′ from the galaxy’s nucleus is a 13th-magnitude star; due N of that star by 3.75′ (3.5′ from the nucleus) is a 10.5-magnitude star, and 4′ SP the galaxy is a 13.5-magnitude star.

12:34
NGC 5061 (Hya): Still scraping the low reaches here. This one is even brighter than the previous few, with an obvious, well-defined halo, a much brighter small core, and a bright stellar nucleus. It’s slightly elongated P-F, 2.0′ x 1.75′. Quite a nice galaxy! 2.5′ almost due F (slightly S) is an 8.5-magnitude star; a small triangle of faint stars is off to the F side; the brightest in the triangle (at 12th magnitude) is 1.5′ due F that 8.5-magnitude star. 3′ N very slightly P the galaxy is a 13th-magnitude star. Another 13th-mag star is NF the galaxy by 4′; also NF galaxy by 18′ is a double star, which has almost equal components (the N-most may be slightly fainter); these are separated by 0.25′, and oriented N very slightly F-S very slightly P to each other.

With Hydra finished, I had a choice: move over to the setting Leo, head up to the still-prominent Canes Venatici and Coma Berenices, or continue on into Virgo. I chose the latter, as to not fall further behind my schedule.

1:00
NGCs 5084, 5068, 5087 (Vir): These three (they’re too far apart to qualify as an actual trio) are N of Gamma Hya, and very different to each other. 5084 is a very long, skinny galaxy, obviously an edge-on spiral. It’s elongated P slightly S-F slightly N, 3.0′ x 0.5′. It has a bright core and a stellar nucleus that are offset toward the F end of the galaxy. The halo is pretty well-defined and extended on the P end. The galaxy is in the middle of a trapezoid of six faint stars; on the NF end of the trapezoid is the closest vertex to the galaxy, a 14th-magnitude star 2.25′ F the galaxy’s nucleus; S very slightly F the galaxy by 4.25′ is a 13th-magnitude star; SP galaxy by 5.5′ is a 12.5-mag star that’s the brightest in the trapezoid; 5.5′ P and very very slightly S of the galaxy is a 13.5-magnitude star; just N of that star by 1.75′ is a 14.5-magnitude star. NP the galaxy by 8.5′ is a 13.5-magnitude star. Due F the galaxy by 12′ is a 9th-magnitude star. There’s another 9th-magnitude star 21′ due S of the galaxy. NGC 5068 is more than a 42′ field N slightly P 5084. This one is a huge diffuse round glow, with very little central concentration, just a (very) slightly brighter core that makes up half the size of the halo. The galaxy is about 4.25′ round, a poorly-defined galaxy that is nonetheless quite obvious. There’s a 14.5-magnitude star just on the N very slightly F edge of the halo. 0.5′ due P the edge of the halo is another 14.5-magnitude star, and a 14th-magnitude star is just off the SP edge of the halo. A 9.5-magnitude star is SF the galaxy by 15′, and a 10.5-magnitude star is NP the galaxy by 11.5′. NF the galaxy by 22′ is an 11th-magnitude star, and 13′ N of that star is NGC 5087. This galaxy is quite bright and slightly elongated N-S [a slow-moving satellite just crossed the galaxy]. It has an obvious but not overly-bright core and a stellar nucleus. It’s about 1.25′ x 0.875′ and very well-defined, with no “searching for edges.” 4′ N very slightly P 5087 is an 11th-magnitude star with a threshold star 1′ due P it. Due N of the galaxy by 15′ is a 9th-magnitude star. On the P side of the galaxy is a group of six stars: a triangle SP the galaxy (the brightest star in the triangle, the F-most vertex, is 10th magnitude, 7.5′ from galaxy; the P-most in the triangle is only slightly dimmer [10.5-magnitude] and 9′ from the galaxy, while the vertex to the S is threshold-level), a close pair due P the galaxy by 9′ (the N-most is much brighter; these are 10th and 12thmagnitudes and separated by 0.5′) and a single star of 9th magnitude 8′ P slightly N the galaxy. There’s also an 8th-magnitude star 17′ S of the galaxy.

1:16
NGC 5134, IC 4237 (Vir)—Seeing is decreasing now, but NGC 5134 is kind of impressive, brightish and obvious. It doesn’t have a bright core but has a prominent stellar nucleus, and is fairly evenly illuminated. It’s elongated NP-SF, 2.0′ x 0.75′, and pretty well-defined, but has a smoother brightness profile than most edge-ons (?). There are several faint stars around it; the brightest, at 10th magnitude, is F very slightly N of the galaxy by 9.5′; it may have a fainter companion NF; these stars are the NP end of a squiggle that stretches to the SF edge of the field. SF the galaxy by 8.5′ is a 11.5-magnitude star. Just off the NP edge of field, 23′ from 5134, is a 7th-mag star. Another galaxy [IC 4237] is due P NGC 5134 by 11′; it’s much more diffuse and fainter, with much less central concentration. Dimensions are difficult to tell, but it’s elongated NP-SF, and may have a threshold star just off F end. Between the two galaxies is a 13th-magnitude star, and NF that star by 4′ is a 13.5-magnitude star.

1:31
NGCs 5018, 5022 (Vir)—5018 is much the more obvious of these two, and looks like an elliptical. It’s 1.67′ x 1.25′, elongated P-F. The galaxy is pretty bright and well-defined, with an obvious brighter core and stellar nucleus. 6.25′ P and slightly N of galaxy is a 10th-magnitude star. A threshold star is 1′ off the edge of the galaxy’s halo on the F side, with another threshold star 2′ N of the galaxy. A 14th-magnitude star is 4.5′ S very slightly P galaxy. A 12th-magnitude star is 4′ F and very slightly S of the galaxy; a 13.5-magnitude star is due F that star by 1.5′. NF the galaxy by 7′ is an 11th-magnitude star; S slightly F that star by 2.5′ is NGC 5022: this galaxy is visible only sporadically. It’s a thin, undefined streak, 2.0′ x 0.3′?, and elongated S slightly P-N slightly F. I’m barely capable of holding 5022 in direct vision, as seeing has gotten poor and it may be quite faint at the best of times. It has a faint trace of a core but a definite nucleus. I was fortunate to see it, as it could have been passed over in current conditions.

 Oggie and his girlfriend had left by this point, and now Dan was packing up. With even Virgo past the meridian, I was quickly running out of time there as well, and I decided to call it a night. The next night was forecast to be as good or better than this one had been, so I only slightly reluctantly made the decision to tear down and head for home.

***

Thoroughly lactose-free, I headed up to Eagle’s Ridge the next night a bit earlier than the previous. I knew I would be alone tonight: Dan and Oggie were planning to check out a couple of possible new sites near Triangle Lake, Jerry was still sick, and no-one else had been interested in making the trip (based on the club’s e-mail list). Alone wasn’t that bad–at least I wouldn’t feel anti-social if I stuck to my own devices.

I had of course intended to work my way through the Leos (“Major” and Minor), but a look at my laminated Sky Atlas 2000.0 (Chart 6 tonight) showed that I still had a number of galaxies nearby in Lynx to ferret out. I should’ve let them go until next spring, but for whatever reason, I decided to catch them tonight. As I waited for the night to completely fall, I zeroed in on an object that was easy to find and bright enough to be visible in the twilight, watching it as more details became visible, until I felt the sky was dark enough to start taking adequate notes.

5/13-5/14/18

EAGLE’S RIDGE SPUR ROAD (43° 48′ 17.9496” N, 122° 42′ 45.6912” W)
MOON: 29 days; 1% illuminated, rose at 4:57 AM
SEEING: 8
TRANSPARENCY: 7
SQM: not checked
NELM: 6.7
WEATHER CONDITIONS: temps in low 50s, no breeze, some dew on exposed plastic elements but none on optical surfaces or telescopes

Others present: none

All observations: 12.5 f/5 Discovery truss-tube Dobsonian, 14mm ES 82˚ eyepiece (112x, 0.7˚ TFOV) unless otherwise noted

 

10:19
NGC 2903 (Leo): It’s not quite fully dark yet. This stunning galaxy has always been a favorite, though—a huge, Messier-quality galaxy. It has a prominent core and a substellar nucleus (the core is not particularly large [0.75′?]), and shows a hint of a bar running almost N-S (maybe this is known from photos more than actually seen?). The galaxy spans 9′ x 3.75′. It’s hard to see if there is a visible wind direction to the arms. The galaxy has a very well-defined halo. There’s N-S brightening about 2/3 of the length of galaxy, and the occasional hint on the N slightly F edge of the halo as if a separate arm, like a dark obscuration between that and the core or a detached arm. There’s a slight notch on the NP side of the galaxy, about halfway between this “detached part” and the nucleus—is this a spiral arm wrapping from the F side of the nucleus around to the N where the detached portion is? To the F slightly S of the galaxy is a 14.5-magnitude star 3.5′ from the galaxy’s nucleus. 4.5′ N very slightly P the galaxy is a 14th-magnitude star.—7′ NP the nucleus is at least a 14th-mag star; it may be a double, with a secondary of threshold level SP primary by less than 1′. S of the galaxy from P to F is a chain of stars of which the SF star is brightest (at 12th magnitude), 6′ from the nucleus of the galaxy; P very slightly S by 2′ is a fainter (13th magnitude) star; from the 13th-magnitude star 3.75′ P very slightly S is a 12th-magnitude star; from that star, 4.5′ P and slightly N is a 12.5-magnitude star; F and slightly N of that star by 1.5′ is a 14th-magnitude star. N of the galaxy is a flat trapezoid of stars; 8.5′ N very slightly F the galaxy’s nucleus is the brightest star (10th magnitude) in the trapezoid; NP that star by 3.5′ is a 13th-magnitude star; due P that star by 3.5′ is a pair, the brightest of which is SP the fainter by 0.25′ and these are 11.5 and 14th magnitude; SP the 11.5-mgnitude star by 4.5′ is another 11.5-magnitude star. The brightest star in the field (8th magnitude) is 21′ N of the galaxy.

Still with time to catch the Lynx galaxies before they dipped too low into the Eugene light-dome, I headed over toward that region of Lynx by the feet of Ursa Major.

10:51
NGC 2493 (Lyn): This one’s a bummer, one of the most difficult Herschels so far (although, to be fair, Lynx is starting to dip into the light dome of Eugene in the northwest). It took a lot of searching to find—I struck out on 2415. The galaxy is a tiny, roundish spot, very very faint, perhaps 0.3′ round. It has a tiny halo and a miniscule core (almost a nucleus). The galaxy is part of a very elongated diamond of stars, the brightest star (8th-mag) of which is NF the galaxy by 7.5′; to the P slightly N and NP of the galaxy, each by 4.5′, are a 10th-magnitude star and a 10.5-magnitude star respectively. NP the galaxy by 1.5′ is a 14th-magnitude star. A pair of 13.5-mag stars are S very slightly F the galaxy by 3′, with the second 0.75′ P slightly S of the first; a 14th-magnitude star is S very slightly F the galaxy by 3.5′. The galaxy has enough presence to stop on rather than passing over, but not any more than that.

11:19
NGC 2541 (Lyn): Amazingly, this one is even worse than the previous. Is this really a Herschel II object? It’s as substantial as a gnat fart in a hurricane, almost an averted-only object. It’s a very diffuse tenuous glow, difficult to determine the size of and poorly-defined, with only the slightest bit of central concentration. Elongation is N-S, 2.5′ x 1.5′. The galaxy sits just S of a pair of three-star arcs; one arc starts NP of the galaxy and dips S-ward, while the other starts NF and dips SP-ward. The galaxy is halfway between the S-most star (10th magnitude) in the first arc and an 11.5-magnitude star SP the galaxy. These stars are 8′ apart. F the galaxy by 6′ is a grouping of five 14th-mag and fainter stars in a zig-zag that starts NF the galaxy, moves toward the SP, back to the SF and then back to the SP; this zig-zag is 5′ from tip to tail. There’s also a 10.5-magnitude star 8′ S slightly F the galaxy. The brightest star in the field is a 9th-magnitude star 17′ SF the galaxy.

11:31
NGC 2500 (Lyn): This one is another relative disappointment, down toward the light dome of Eugene. It’s round, 2.25′ diameter, and very diffuse, with no central brightening and a poorly-defined halo. The galaxy is in the middle of a scattering of 12.5-magnitude and fainter stars with no real shape. There’s an 11.5-magnitude star just on the SP edge of the halo, and a threshold star just on the F side of halo. 2′ to the N is a 12.5-magnitude star. 2′ SF the star on the SP edge of halo is a 12.5-mag star. The brightest star in the field (9th-magnitude) is SP the galaxy by 14′.

11:43
NGC 2782 (Lyn): Not particularly impressive, but better than the last few. This one is smaller and brighter than previous two and roundish, 1.25′ diameter. It has a diffuse, poorly-defined halo, a brighter core, and a hint of a stellar nucleus. NF the galaxy by 8.5′ is a 10th-magnitude star. 4.5′ NP the galaxy is a very difficult double, hard to hold separate; separation is about 10″ but the faintness of the secondary is the main factor in its difficulty; the primary is P the secondary; components are 13th– and threshold magnitudes. A threshold star is 2.5′ due P the galaxy. Due S of the galaxy is the first of a pair of roughly equal (12.5-mag) stars; one star is 2.75′ due S of the galaxy and the other 1.5′ SF the first. 17′ SP the galaxy is a 9.5-magnitude star.

By this point, Lynx was becoming untenable to work in due to the light pollution. I sort-of let Sky Safari choose my next group of targets based on setting time, heading onward to my originally-intended hunting ground, Leo and Leo Minor.

It’s important to note, too, that even a dim and seemingly-featureless galaxy is an object worthy of contemplation and observation. I might call one “unimpressive” or “disappointing,” but it’s still an entire galaxy, and I still feel a touch of awe when I see it, out of respect for its true nature and the inconceivable distance between the observer and the observed.

11:57
NGC 3162 (Leo): Diffuse and difficult. Located near Adhafera [Zeta Leo]. This galaxy is irregularly bright in its inner regions. It’s roundish, 1.25′ in diameter. It has a faint core that’s poorly defined against the halo, which is pretty well defined despite its diffuseness. There’s a just-above-threshold magnitude star on the F slightly S edge of the halo. The galaxy forms one of the bottom corners of a Japanese torii pattern, the top of which arcs from NP to slightly S to NF the galaxy; one column of the torii runs NP and SP of the galaxy; N of the galaxy is the top of other “column”; the two stars at the edges of the arc are the brightest in the pattern; 10′ NP the galaxy is an 8.5-magnitude star; there’s a 10th-magnitude star 9.5′ NF the galaxy; the stars in the column P the galaxy are NP the galaxy by 5′ and 3.5′ P slightly S of the galaxy; N slightly F the galaxy by 3.5′ is the top of the other “column.” Due F the galaxy by 4.5′ is a 14th-magnitude star.

12:10
NGCs 3226, 3227 (Leo): An excellent pair! These are obviously interacting spirals [3226 is actually an elliptical]. 3226 is N very slightly P 3227, and much the smaller of the pair. There maybe a bit of N-S elongation, perhaps 1.25′ x 1.0′. 3226 has a diffuse but well-defined halo (is a halo ever not diffuse?) and a largish core. Every few moments is a flicker of a substellar nucleus, which is 2.5′ from the nucleus of 3227. 3227 is SF 3226, and is much the larger of the two at 2.25′ x 1.25′, elongated NP-SF. It’s not sure if there’s dark space between the two galaxies’ haloes. The galaxy has an obvious stellar nucleus and a brighter core that’s not as distinctive as 3226’s. Due P the nucleus by 4.5′ is a 13.5-magnitude star. 6′ NP the center of 3226 is a 13th-magnitude star; N of that star by 1.5′ is a 14th-magnitude star. An interesting small triangle of stars is SP the galaxies; the closest vertex to the galaxies is an 11th-magnitude star 7′ SP the nucleus of 3227; P very slightly N of that star by 1′ is a 12th-magnitude star. Back to the 13th-magnitude star: S and very slightly F that star by 3.5′ is the brightest star (10th magnitude) in that triangle. The brightest star in the field is 18′ SF the nucleus of 3227 and is 9th magnitude.

12:28
NGCs 3185, 3187, 3190, 3193 (Hickson 44; Leo): Perhaps the best of all the Hickson groups, although 3187 more difficult tonight than I’ve seen it in the past—the light glow in the northwest is getting harder to avoid. 3185 is a diffuse glow, slightly elongated P-F (1.5′ x 0.75′). It has a little central brightening, a hint of a stellar nucleus, and a poorly-defined halo. It’s surprisingly quite difficult tonight. 10.5 N slightly F is 3190, the brightest/most obvious of the four. It’s elongated P-F (2.0′ x 1.0′), with a bright core and bright substellar nucleus, and a better defined halo than 3185. A threshold star is SP galaxy by 1.5′; N very slightly F by 3.25′ is a 12th-magnitude star. Due P 3190 by 5′ is 3187: really tough tonight, a threshold-level, P-F elongated glow, but its extent is hard to determine (it’s obviously smaller than 3190). 3187 appears to have a threshold-level star just SF it. 8.5′ N of 3190 is the second-brightest star in field at 8th magnitude. P and slightly N of 3190 by 17′ is a 7th-magnitude star, the brightest in the field. NF 3190 by 5.5′ is 3193, which is smaller than 3190 but almost as bright. It’s about 1.5′ across and roundish, with a large substantially-bright core and substellar nucleus; the core makes up about 75% of the galaxy’s diameter. The halo is small and well defined. 1′ due N is a 10th-magnitude star. F slightly N of the galaxy by 4′ is an 11th-magnitude star. NF galaxy by 7′ is a very faint pair of stars, separated NP-SF by 0.5′; these are of 14.5- and 15th-magnitudes.

12:43
NGC 3301 (Leo): This is an elongated spiral, but not the easiest edge-on I’ve seen. It does have a well-defined brightish core and a stellar nucleus. The galaxy is elongated SP-NF at 2.5′ x 0.75′. The ends of the halo are not well-defined; they kind-of evaporate into the background. Due N of the galaxy is a smallish right triangle of stars, with the short edge almost parallel to the galaxy; the short edge is 1.75′, the long edge 3.25′; the right-angle vertex is 3′ N of the galaxy and is the closest of the triangle’s stars to the galaxy; the opposite vertex on the long edge is the brightest in the triangle at 11th magnitude; the right angle vertex is 11.5 magnitude; the third vertex is 12.5 magnitude. 6′ SF galaxy is a 13th-magnitude star. On opposite sides of the field (S slightly P and NF the galaxy) each by 18′ are 10th-magnitude stars. An interesting double star is 20′ N slightly P the galaxy, with the 13th-magnitude primary component 0.5′ NP the 13.5-magnitude secondary.

1:02
NGC 3294 (LMi): Big and diffuse, with very little central brightening. The galaxy is quite obvious despite having almost no definition at all. It’s 3.0′ x 1.25′, elongated NP-SF. The galaxy seems wider on the NP end than on the SF end (?). There are 10th-magnitude stars NP and NF the galaxy; the star to the NP is 8′ from the center of the galaxy; the star to the NF is 5.5′ from the center of the galaxy. 12′ SF the center of the galaxy is an 8th-magnitude star . There may be a threshold star P the galaxy by 2.5′. 5′ from the SP edge of the galaxy is a 12.5-magnitude star.

I had to abandon the Lions at this point; Hickson 44 had been something of an indicator that Leo itself was already too close to the light-dome of Eugene. For all my intentions of doing a massive and thorough sweep through the Greater Lion, I’d gotten only a few of the dozens of Leo Herschels I needed. I ended up heading east and north for my last few galaxies of the night.

1:18
NGC 4203 (Com): had to move into Coma as Leo is in poor position. This is a very interesting field. The galaxy itself is 1.5′ round, with a small bright core, a brightish stellar nucleus, and a well-defined halo—probably an elliptical? 3.75′ N slightly P the galaxy is an 8th-magnitude star. 2′ N of the galaxy is a 12.5-magnitude star. The brightest star in the field is on the SF edge of the field (20′ SF the galaxy) and is 5th magnitude. NP the galaxy is an arc of three stars 21′ from the galaxy. From S-NF: 8th magnitude, 10th magnitude, 11th magnitude; these are spaced about 4.25′ apart; the S-most is 17′ NP the galaxy. S of the galaxy by 21′ is an 8.5-magnitude star. SP the galaxy by 28′ is a beautiful double star [ADS 8470]: yellow primary and blue secondary, separated by 0.5′, with the primary P the secondary.

1:37
NGC 4395 (CVn): Another one of the most difficult in the Herschel catalogue (again). Huge!. This one is barely visible, tougher than (but similar to) NGC 4236 in Draco, and averted vision gives only slight benefit. Just a big round glow, 7′ across minimum [satellite through field]. It has the slightest hint of central brightening that runs NP-SF (rocking the scope helps reveal this elongation); the central region is 5′ x 7′ and looks “lumpy”, with a few threshold stars sprinkled across it?. One threshold star is on the F side 2/3 of the way from center to edge; there may be another threshold star SF in halo and one more threshold star on the NP side. There seems to be something small and nebulous on SF side? Distinctly non-stellar [NGC 4401?]. The galaxy is bracketed on the P and F sides by brightish stars: on P side, 12′ from the middle of the galaxy, is a 9th-magnitude star; there’s an 11th-magnitude star on the F slightly N side by 12′. 7′ S of the center of the galaxy is a 13th-magnitude star. I need to reexamine this one with the 18″ scope!

1:59
NGC 4051 (UMa): A really interesting one! This galaxy seems to show spiral structure. The halo is very large and is elongated P-F, while the brighter inner structure seems elongated NP-SF. The galaxy has a distinctive stellar nucleus and a small not very bright core region; this core region looks more a bar that runs NP-SF. The galaxy spans 4.0′ x 2.5′. This coulda been a Messier! A faint spiral arm appears to be reaching toward an 11th-mag star just off the P edge of the halo; the NF edge of the halo is less distinct than the rest, and there appears to be a notch in SP edge of halo. 4.25′ NF the galaxy’s nucleus is a 15th-magnitude star, and there is a 14.5-mag star 7′ F the galaxy’s nucleus. F slightly S of the galaxy by 12′ is an 8.5-magnitude star. 19′ P slightly N of the galaxy is an 8.5-magnitude star, and a 10th-mag star is NF the galaxy by 20′. This is a great galaxy, and I need to return to it!

2:11
NGC 4143 (CVn): A brightish, elongated galaxy, elongated 2.25′ x 0.75′ NP-SF. [There’s a very slow-moving satellite in the field]. The galaxy has an obvious bright core, although there’s something embedded in the NP end, or what looks like a double core. There’s also a visible substellar nucleus. The halo is well defined. 3.5′ N of the galaxy is a 14.5-magnitude star. A 9th-magnitude star lies SP the galaxy by 5′. P the galaxy by 6.5′ is a 13th-magnitude star; SF the galaxy by 4.5′ is a 13.5-magnitude star. Even further SF the galaxy is a small diamond-gemstone asterism; the SF-most star is the bottom of the diamond, and is 9th-magnitude, 14′ from the galaxy; the three stars in the top of the diamond are all 11th-/11.5-magnitude.

2:20
NGC 4138 (CVn): , An interesting inclined spiral, not far from 4143. This has a diffuse, not particularly well-defined halo and a bright core, but no visible nucleus. The galaxy is elongated 1.75′ x 1.0′ NP-SF. N slightly P the galaxy by 2′ is a 12th-magnitude star; NP that star by 4.5′ is another 12th-magnitude star; 5′ NF that second star is another 12th-magnitude star; these three form a triangle. 13′ F and slightly N of the galaxy is a 10th-magnitude star, while NP the galaxy by 18′ is a very impressive double: separated P-F by 0.25′ (secondary P the primary); the white 8th-magnitude primary is much brighter than the slightly blue 11th-magnitude secondary.

So that was that. With dawn soon to encroach and an hour’s drive ahead, I effectively conceded my attempt to finish the Herschel 400 and Herschel II this calendar year. I might be able to work through the earlier spring galaxies in the mornings of late fall and winter, but those seasons bring far fewer clear nights in which to “work.” I could also take much less detailed notes on the remaining objects and do more of them per night, but that’s far less satisfying and would feel like cheating.

So I packed up and headed home. When next I would get out to observe, Virgo too would be well past the meridian. Having previously cleared out the Herschels from the region in the best viewing position (Boötes/Serpens/Hercules/Draco), I could either choose to work on the galaxies of Ursa Major (which would still be in good position to observe) or I could begin making headway on the nebulae and clusters of the summer Milky Way—as I write this, I’m leaning toward the idea of the latter. Whichever happens, though, it’ll still be a worthwhile endeavor and a way to learn more about the universe.

 

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s