Ghosts and Shadows

Shakhbazian 317; image centered on PGC 8329. Courtesy/copyright Sloan Digital Sky Survey.

Late September and October bring with them a sense of urgency for the astronomy-minded in the Willamette Valley—the frequent weeks-long stretches of clear nights end at this point on the calendar, replaced by months of uncertainty: will this weekend be the first/last opportunity of the rainy season? Every break in the clouds, every blue box on the Clear Sky Chart raised a glimmer of hope, one often dashed by the reality of living in the Pacific Northwest. They call them “sucker holes” for a reason.

I. So when the Clear Sky Chart went blue for several nights during the September/October Moon-dark phase, the effect was roughly akin to a house full of dogs seeing their master gathering up their leashes for a walk: a virtual stampede out of town to the site of best forecast. In this case, Linslaw Point, and a stampede missing some of the usual suspects; Dan B was ill, and Loren was in North Dakota for the week. But Jerry, Mark, Robert A, and Alan were on-board, and we made an immediate beeline caravan for the Coastal Range once sunset hit T minus 60.

For the first time since April, I brought out the heavy artillery—EAS’ 20-inch Obsession. I was scheduled to go back to work in October, and I needed to be physically ready for it. What better way to test this than by negotiating my way around the massive scope? Loading it into the Flex hadn’t been a huge problem for my reconstructed foot or anything else; perhaps the rigors of using it in the field (specifically, on the crag) would be less demanding than they might at first seem.

To this end, I had an agenda tailor-made for the big scope: flat galaxies, Hickson groups, some Shakhbazian groups, a couple of the remaining Herschel objects, some objects I’d observed previously without taking notes on (eg. PGC 70994, the difficult ring galaxy in Pisces) and a few of the Deep Sky Forum’s past Object of the Week entries. I’d also managed to scare up a couple of extremely-obscure galaxies in Sagitta for the sake of my idiotic quest to observe a galaxy in every constellation, Sagitta being one of only two constellations with no galaxies brighter than 15th magnitude (Scutum being the other, and likely the most difficult of all).

I managed to get the Obsession assembled with only minor difficulty and a few lesser swear words. Collimation was a different story; despite my having put the scope together at home that morning, it was still far out of optical alignment. Jerry had done some work on the upper tube assembly (UTA) to clean up the previous issues with collimation, and had rebuilt the dew-heater system so that it actually worked. This had necessitated quite a lengthy pre-observing collimation session at home, to make sure I didn’t have to spend an hour in the field getting the critical alignment correct. But the secondary-mirror holder was still a nightmare to work with—a pox on three-point secondary mounts!—and I’m sure even George Carlin would’ve suggested that I dial back on the profane phraseology I used while getting the blinkered secondary to stay where it needed to stay.

Ultimately, the wretched secondary holder got centered up and stayed there. I went to the back of the telescope and dialed in the primary mirror, then checked the secondary again. Success! After a few minutes’ tweaking of the Telrad alignment, the whole scope was ready to go. Now, all that remained was for the sunset glow to fade to black (or at least dark grey, given the natural airglow and the light dome from Eugene/Springfied, mostly blocked by the sandstone crag).

MOON: 28 days (set at 6:40 PM; 3% illuminated)
SQM: 21.4
NELM: not checked
WEATHER CONDITIONS: temps to 55F; no dew; slight breeze
All observations: 20″ f/5 Obsession Dob, 14mm ES 82˚ eyepiece (181x, 0.45˚ TFOV) or 7mm TeleVue Nagler (363x, 0.21˚ TFOV) unless otherwise noted

Unwilling to waste a moment, I went straight for my first Sagitta galaxy, UGC 11385, on the constellation’s far western end. But though I had the location correct, I was unable to winnow the galaxy out from the star field. I didn’t look that tough on the POSS plate, and I had the right field, but… nothing. I stared into the field for several minutes. Still nothing.

Not wanting to give up, I scooted the giant scope over to the eastern end of Sagitta for my second target. This one took little time to extract from the field.

PGC 64467 (CGCG 447-1; Sge): The first galaxy on my first night back with the 20-inch, and we’re going after the hard stuff already: this is PGC 64467 in Sagitta, and it is exactly what one would expect from a 15.44-magnitude galaxy. This is part of my quixotic quest to view a galaxy in every constellation; I only had two candidates in Sagitta and this one, I thought, was going to be the more difficult of them, but the UGC just was not willing to be seen (part of this is because Sagitta is in an awkward part of the sky for the ladder and, therefore, my feet). But this little galaxy is sandwiched between two 12.5-magnitude stars that are about 1.3’ apart, N and S of it. The galaxy is extremely faint, and elongated N-S; it cannot be more than 0.3’ x 0.2’. It’s very diffuse and weakly defined, and only in averted vision here in the 14mm does it show any sort of central brightening; I’ve already used the 7mm Nagler on it, and it didn’t really enhance the view at all. The two 12.5-magnitude stars bracketing the galaxy form the N end of the P-most of a pair of arcs, like a pair of inward-bowing parentheses. 2’ S somewhat P the S of the two 12.5-magnitude stars is an 11th-magnitude star, and then 2’ SP that star is a 10.5-magnitude star; these finish off the P of the two arcs. The other arc is almost as much a “V”-shape, with the 11.5-magnitude vertex of the “V” 2’ S slightly F the galaxy, and the S end of that F arc or “V”-shape is a little scalene triangle. NF the galaxy by 5’ is the brightest star in the immediate field, which is 10.5 magnitude; N slightly F the galaxy by 2.75’ is a 10.5-magnitude star that has P slightly S of it by 0.5’ an 11.5-magnitude star. With the 7mm back in, there’s a very faint star N very very slightly F the galaxy, about half the distance from the galaxy to the more N of the two 12.5-magnitude stars. That galaxy is just there in direct vision, but very ghostly and intangible. Nonetheless, that is a galaxy in Sagitta, where only two are within range of a standard amateur telescope.

In the background, Mark and Robert were animatedly discussing Elon Musk, Starlink, and the potential for amateur space travel; Mark was still setting up his astrophotography rig. In the foreground, however, I was experiencing the drawbacks of my astronomy ladder. The wide steps—the reason I’d bought it—were certainly a huge boon for my tormented feet; they were spaced so far apart, however, that the eyepiece of the Obsession always seemed to be either a half-step too low or a half-step too high for comfortable viewing. I needed to build a tray for the top of the ladder, too, like I had done with the green ladder for the EAS 18-inch scope, as the “shelf” atop the ladder was too small for more than an eyepiece or two, and then only if they were lying down. Worse, the rail the shelf attached to was rickety and a bit frightening to lean against. I’m sure it was probably safe, but it felt too dainty to lean my full weight against. And the four feet on the ladder made it harder to position than Jerry’s tripod ladder. Still, those 10″-wide steps made being on the ladder bearable, compared to every standard ladder I’d ever used.

I’ve observed Hickson 88 in Aquarius a number of times; it’s not hard to locate, and the three NGC-designated galaxies are quite easy, even in the 12.5-inch scope. The fourth is quite difficult, but there it was, in the eyepiece of the 20-inch Obsession. The seeing and transparency that low in the sky were fairly murky, but I’m not going to let that stop me from a target I really want to observe.

NGCs 6978, 6977, 6975; PGC 65612 (Hickson 88; Aqr): I’ve taken notes on Hickson 88 before, but certainly not with a 20-inch scope. The three NGC galaxies are really pretty obvious tonight, while the PGC is coming and going as the transparency wavers. The NGCs are all S somewhat P-N somewhat F to each other, with the brightest one, NGC 6978, on the N somewhat F end. It’s elongated P slightly N-F slightly S, about 1.0’ x 0.3’, and moderately-well defined, with a stellar nucleus and a somewhat brighter core; the core is a little bit on the gradual side. 1.3’ S somewhat P NGC 6978 is a 14.5-magnitude star, and then 1.25’ S somewhat P that star is NGC 6977, which is rounder, 0.75’ diameter, with a small, gradually arrived-at, somewhat-brighter core but no visible nucleus; the halo is moderately-well defined. 1.75’ S somewhat P NGC 6977 is NGC 6975, which is the most diffuse of the three; it’s about 0.67’ diameter, with a very faint, poorly-defined halo and a slightly-brighter core. 2.5’ P NGC 6975 is a 12th-magnitude star, and then from that star S slightly P by 1.5’ is PGC 65612, HCG 88D, which has a 12.5-magnitude star S of it by 1.3’. F somewhat S of NGC 6975 by 3.5’ is the dimmer of a pair, which is 11.5 magnitude and has a 10.5-magnitude star 0.75’ F very slightly S of it. With the 7mm PGC 65612 pops out a little bit more; it’s 0.5’ long, elongated P-F, very very thin, very evenly illuminated as well, but very ghostly and only intermittently visible in direct vision. At this magnification, the nucleus in NGC 6978 really shows well.  The halo-core distinction in NGC 6977 is very gradual, and the central concentration in NGC 6975 is more apparent than I saw it earlier. 

I could’ve taken longer notes, but the group was in a slightly-awkward spot for me on the ladder—just as PGC 64467 had been—and my legs were starting to cramp up. This would be a recurrent theme throughout this dark run.

In the spirit of giving stupid nicknames to deep-sky objects—a specialty of some astronomy writers—I’m going to call Hickson 88 the Three Stooges Galaxies, with the PGC galaxy as Shemp; maybe the nickname will stick. (It’s still a better nickname than “The Deer Lick Group.”)

Not far from Hickson 88 is one of my personal bêtes noire, MCG-1-53-12, a.k.a. PGC 65506. This flat galaxy is one of the few visible in the early-fall regions of the sky; I’d already made several attempts at observing it, with varying degrees of failure. Only on one or two occasions had I seen enough of the galaxy to confirm the sighting, and none of them was convincing enough to take notes one it. Now, though, I was able to hold the galaxy steadily enough to describe it.

MCG-1-53-12 (PGC 65506; Aqr): Finally—the long-sought PGC 65506 in Aquarius. I’ve glimpsed this flat galaxy before but was never really sure that I could say that I saw it, but I’ve finally got a solid-enough sighting to confirm it. The galaxy is between the right-angle vertex of a small triangle to the P and NP and a pair to the F, of which the S of the pair is the brighter. It’s 1.3’ x 0.125’, and really takes averted vision to hold steadily, so only just a 1 on the averted-vision scale but barely holding. It’s elongated perfectly 180˚ in PA (or 0˚). The right-angle vertex of that little triangle is 1.25’ P very slightly N of the galaxy and is 13.5 magnitude, and has N slightly P it by 1.25’ a 14.5-magnitude star; from the right-angle vertex P slightly S by 1.75’ is a 13th-magnitude star that finishes the triangle. From the galaxy F very slightly N by 2’ is the S of that pair, which is 12.5 magnitude and has a 13.5-magnitude star 0.5’ N very slightly F. The view in the 7mm is still ridiculously faint. The galaxy is actually not bad here at 362x; although the field is significantly darker, there’s just enough added contrast to pop the galaxy a bit. It’s very even in illumination, with no central brightening to it. At this magnification, the N star in that pair F the galaxy is actually a double—it has a 15.5-magnitude star P it by 10”—and that right triangle is actually more like a diamond due to an added star (we’re going to forget that for now and just keep calling it a right triangle because it’s more fun to talk about). 

I had intended to pass on that particular galaxy tonight, and am pleased that I didn’t.

Jerry was showing Dan R NGC 206, the star cloud in M31; he’d asked me for the NGC number. My caveman brain was full of NGC numbers, an annoying Rain Man-esque tic that was a source of amusement for my EAS colleagues. I’m not sure how or why it came to be that way.

On the opposite end of Aquarius, just south of the Water Jar asterism, is one of the easier of the Shakhbazian Compact Groups. The Shakhbazians (colloquially) are a level beyond the Hickson Compact Groups in observing difficulty: much more distant, much fainter, much smaller on average than the Hicksons, and some of the most-challenging galaxy groups for telescopes of any aperture. (It should be noted that several of the Hicksons are also in the Shakhbazian catalogue.) My quarry here was Shakhbazian 331, a roughly north-south string of six galaxies no more than 1′ long. I often refer to the Shakhbazians when in the field, usually in a comedic manner (on a smoke-laden evening: “looks like good skies for Shakhbazian hunting,” etc.), but I was bound and determined to take notes on several of these obscure groups during this dark cycle. Lo and behold, Shk 331 was immediately apparent in the eyepiece. Both Dan R and Jerry took skeptical looks and were impressed to see this tiny glow, the feeble combined light of these ephemeral, ancient (z = 0.0534, 750 million light-year distant) galaxies.

PGCs 96867, 96865 (Shakhbazian 331; Aqr): The first of several Shakhbazian Compact Groups on my agenda, this is Shakhbazian 331 in Aquarius. I know there are at least four galaxies here, but although they’re definitely there in the eyepiece, they’re almost impossible to separate at this magnification. These form a difficult (but not excruciatingly so!) collective glow that’s 0.75’ in diameter; it’s fairly obvious when you first look at the field. 4.25’ S of the galaxies is a 12.5-magnitude star that serves as something to latch onto in the field, and 12’ F very slightly N of the group is a 7th-magnitude star that’s a real annoyance in the eyepiece. 2.75’ N of the group is a 14.5-magnitude star, and then 7’ N of the galaxies is a 13th-magnitude star. Other than the galaxies, there’s not a lot going on in this field; there’re a couple other stars in there, but nothing particularly noteworthy aside from the galaxies. With the 7mm, there are at least two distinct objects here: a larger one N of the other by 0.25’, the larger one about twice the size of the smaller one at 0.25’ diameter. The sky’s just not supporting this magnification, making the view more difficult overall.

My notes were less-extensive than I would have liked, but I was operating at close to the margins for Linslaw and the 20-inch scope on the night.

The air felt damp, but was still warm enough that I wasn’t yet using my winter coat. (I often used it simply for the pockets; with my phone in the upper left and my glasses in the upper right, I could take notes hands-free, and the other pockets allowed for filters and other eyepieces, in addition to the 50-year-old North Face mittens I’d inherited from my dad.) I commented, during my notes on Shk 331, that dew seemed imminent, despite not being indicated on the Clear Sky Chart forecast.

I stopped by Neptune and Triton while in Aquarius, and then wandered through my observing list for a bit. A number of objects (among them the flat galaxy UGC 12281 in Pegasus, the Pisces ring galaxy PGC 70994, and Hickson 91 in Piscis Austrinus) weren’t showing well in the nearly-damp air, especially those in the low south. Others seemed fine–at least, good enough for a set of audio notes. Chief among these was a trio of flat galaxies, the better for making further headway in the AL Flat Galaxy program.

(It was not until writing this entry that I discovered that I had been spelling Piscis Austrinus wrong for decades; it’s Piscis, not Pisces.)

UGC 12423; NGC 7518 (Psc): Here in Pisces with UGC 12423, and there’s a distracting brighter galaxy due S of it; that galaxy is really interesting because it has actual detail to it beyond being just a faint, thin flat galaxy. UGC 12423 actually does have some distinctive central concentration and is quite well defined; it’s elongated in position angle 135˚ and spans 1.5’ x 0.1’. Additional distractions from the galaxy include a couple of faint stars to the SF; there’s a 14.5-magnitude star 2.5’ SF the galaxy and an 11th-magnitude star 2.25’ P very very slightly S; P the galaxy by 1.67’ is a 14.5-magnitude star, and just S of the galaxy by 0.75’ is a 15th-magnitude star. F very slightly N by 1.75’ is the P-most vertex and brightest vertex in a small (almost-) right triangle; that star is 13th magnitude and has a 14th-magnitude star F somewhat N of it by 1’; that star is the right-angle vertex, and it and the third vertex, N very slightly P it by 0.67’, are both 14.5 magnitude. UGC 12423 is fairly obvious, despite the distraction of the larger galaxy [NGC 7518] to the S, 6.5’ S of UGC 12423; this galaxy is elongated P slightly N-F slightly S, 0.1’ x 0.75’ and is pretty poorly defined, although it definitely has a slightly brighter core and a substellar nucleus that shows much better in averted vision. The larger, brighter galaxy really blossoms at 7mm: the core is much more distinct, the nucleus very much apparent; UGC 12423 is also much easier, which is not always the case with flat galaxies. It seems to be a little more evenly illuminated with this magnification than it was at 181x, and much better defined.

I somehow missed UGC 12426, a much fainter edge-on galaxy 9.5′ N slightly F UGC 12423. Missing obvious field galaxies—this too would be a theme of this dark run. Perhaps this impatience was due to the blustery, cool wind that would finally drive me into my winter coat an hour later.

Somehow, I managed to drop my phone off the ladder while recording. Had it been damaged, my evening would, for all intents and purposes, have been over.

The famous Cartwheel Galaxy, which had just been imaged by the Webb Space Telescope, had also been the subject of a recent thread on Cloudy Nights. I had suggested attempting it with Bob the (12.5-inch) Dob, a suggestion which was met with some skepticism from the thread participants (largely because of my northern latitude than because of aperture or skill). Having brought out the Obsession, I thought I would see how the galaxy—perhaps the most-famous ring galaxy of all—might appear in the larger aperture first. With the Cartwheel culminating soon, I had actually suggested it as a target for Jerry’s 20-inch TriDob, as he was casting about for interesting targets.

He found the Cartwheel and its two attendant PGC companions with his usual quickness, but the view wasn’t promising. The two smaller galaxies were quite obvious, but the Cartwheel itself was an extremely-tentative, tenuous thing, its core tiny and very faint and its halo damn-near invisible in the horizon muck. We compared our impressions to verify that we were seeing it, and we certainly were—there was just so little to see that wasn’t drowned out in the poor visual signal-to-noise ratio of the low southern horizon. I passed on the Cartwheel when my culmination alarm sounded. Perhaps another night….

So it was back to flat galaxies, and several fine consolation prizes.

PGC 2526 (Cet): PGC 2526 is really surprisingly obvious here, almost due P Deneb Kaitos in Cetus. The galaxy has a 14th-magnitude star superimposed on it toward the F; just off the F tip is a 15th-magnitude star, but let’s talk about the galaxy first. It’s hard to tell because of the superimposed star, but it looks like just P that superimposed star is a little bit of central brightening. The galaxy is oriented in 80˚ PA, and is about 1.75’ x 0.25’; the halo is well defined Due N of it by 2.67’ is a 13th-magnitude star, and then 3.25’ N very slightly P that star is a 14.5-magnitude star that has a 15.5-magnitude star F it by 0.5’. This is a pretty barren field; its brightest star is 10’ F very slightly S of the galaxy and is 11.5 magnitude. P the galaxy by 13’ is another 11.5-magnitude star (this one might actually be brighter than the other one), and then S somewhat P the galaxy by another 12’ is another 11.5-magnitude star. Hopefully the 7mm Nagler will be able to separate out that star from the galaxy…. In the 7mm, that 15th-magnitude star just on the F edge of the galaxy actually has a little bit of space between it and the galaxy; it’s just a tiny bit S of the F end of the galaxy. The slightly-brighter central region is irregular in brightness. I’m surprised this galaxy got missed by WH, JH, and the other great observers, although it’s right in the “shadow” of a naked-eye star. 

Even better was the next (and the evening’s last) flat galaxy.

NGC 522; ICs 102, 101 (Psc):
 NGC 522 in Pisces is a really, really fine flat specimen, in a field with at least one other galaxy. It’s oriented in 45˚ PA and spans 2.5’ x 0.3’. The halo is irregularly bright but well defined; it does have a small brighter central core, although I’m not really picking up a nucleus. The galaxy has a threshold star due N of it by 1’; S somewhat F by 3.25’ is a 13.5-magnitude star that is the P-most in a (mostly) P-F line of three that also has one branching off of the center, turning it into a stubby capital ‘T’; F that star by 2.25’ is another of 13.5 magnitude; F that one by 3.5’ is another of the same magnitude, and 3’ S slightly P the one in the middle is a 14th-magnitude star. NF the galaxy by 3.5’ is a 15th-magnitude star; there’s a 15.5-magnitude star F the NF tip of the galaxy by 0.75’, and then from the center of the galaxy SP by 8’ is a smaller galaxy [IC 102] that’s about 0.67’ round and much more difficult; it’s not a great direct-vision target. This second galaxy may actually be elongated a little bit P-F, 0.5’ x 0.3’ (if that); it’s reasonably well defined but very very ghostly, and has a very slightly brighter core to it but no nucleus. 5’ P somewhat N of that galaxy is another [IC 101], which is actually a little bit easier to see and is elongated… it’s about 0.67’ x 0.3’, elongated 130 PA (roughly NP-SF); that one has a brighter core but no visible nucleus, and it’s sandwiched between two stars: S slightly P it by 1’ is a 15th-magnitude star and there’s a 13th-magnitude star N slightly F by 2.5’. NGC 522 should show pretty well in the 7mm…. Wow. At this magnification, 522 is really huge, really striking! The two threshold stars really pop out. This galaxy is distinctly irregularly bright and well defined. Of the two galaxies to the P, [IC 102] is pretty uniformly bright, but [IC 101] has a faintly brighter core. Great field! 

Jerry and Dan had left during my observation of NGC 522; Robert and Alan had left some time before. Mark and I were the only ones remaining on the crag, and Mark had gone back into his truck for a nap while his imaging rig continued its tireless work. has perhaps the best English-language astronomy discussion forums on the Internet. I’ve referred to them several times here on this site, and it’s not hard to see why after perusing them; they cover a wealth of topics and have a user base that includes many of the leading luminaries of amateur astronomy. They also provide a wealth of information that isn’t available anywhere else (at least not without a great deal of scouring search engines).

One such tidbit popped up on the deep-sky subform in late November of 2017, courtesy of CN user Redbetter, one of the more-dedicated and experienced deep-sky observers on the site. In the process of tracking down Hickson 21, he had starhopped from the star Tau1 Eridani, and had discovered something unexpected there—a small galaxy, tucked right next to this naked-eye star, which was not charted in any available star atlas (or planetarium app) and which had no known designation. During the discussion, it was noted by the dean of modern observers, Steve Gottlieb, that the galaxy had been observed by the great double-star observer S. W. Burnham in 1890 at Lick Observatory, but had remained lost among Burnham’s papers; it had later been catalogued in the Lyon-Meudon Extragalactic Database (LEDA) which formed the basis for the PGC (its LEDA number, LEDA 2816331, was the same as its PGC number, although the LEDA designation supersedes the PGC here).

After reading the discussion, I resolved to observe this nearly-unknown little galaxy, and I finally had the chance. It was, as the CN thread noted, surprisingly easy, if rather nondescript.

LEDA 2816331 (Eri): A discovery from a CloudyNights thread, this is Redbetter’s Galaxy, LEDA 2816331, tucked right next to the overpowering 4.5-magnitude star
 Tau1Eridani; the galaxy is 2’ P slightly S of Tauand is surprisingly bright for an object that has gone undiscovered or unobserved for that long. It’s elongated roughly NP-SF, about 0.5.’ x 0.3’, and pretty evenly illuminated (although Tau1 is so bright any details in the galaxy would be difficult to discern anyway). The galaxy has P slightly S of it by 1.75’ a 15th-magnitude star. It’s actually a pretty uninteresting field star-wise; there are a couple of other field stars in there, but nothing really noteworthy. 

Mark had begun to dismantle his rig, its photon capturing having finished for the night. Time for one final target.

With modern atlases being based on computer databases, it’s no small surprise that occasional quirks find their way into their pages. One such quirk is the inclusion of a pair of Zwicky galaxies (II Zw 5 in Cetus and III Zw 66 in Coma Berenices) on the charts of both Sky Atlas 2000.0 and the ubiquitous Pocket Sky Atlas. Despite being far too faint for most amateur optics and for the liking of most observers, these little galaxies still draw attention to themselves by dint of being included in the two most popular atlases ever made, simply because they have erroneous magnitude/surface brightness numbers in the source catalogues for those atlases. In any event, I had already looked for III Zw 66 with Bob the Dob during my epic Virgo Cluster run in 2017. Now, with a larger scope and somewhat better skies, the second of these Zwicky interlopers rounded out one of my best-ever nights of observing.

II Zw 5 (LEDA 10192; Cet): Something of a weird triumph here: this is the galaxy II Zwicky 5 in the tail of Cetus, and in a way it’s surprisingly easy given its obscurity. It’s roundish, no more than 0.25’, and occasionally visible in direct vision (but mostly in averted). The galaxy marks the N-most vertex in a small isosceles triangle; 1.3’ due S of it is an 11.5-magnitude star, and SP it by 0.75’ is a 13.5-magnitude star. 12’ due N of the galaxy is the HD 16763, the star that I used to find it in Sky Safari because the galaxy wasn’t listed; that star is 7th magnitude, and has an 11.5-magnitude star 0.3’ S slightly P it and 0.5’ F slightly S of it a 13.5-magnitude star. 9’ due S of II Zw 5 is the NP-most star in a line of three that stretches N somewhat P-S somewhat F; that first star is 11.5 magnitude, and S somewhat F from there, each by 1.67’ from each other, are a 13th-magnitude star and an 11th-magnitude star. In the 7mm Nagler the galaxy is fairly featureless, but even more difficult to see because the field’s been darkened too much; there’s not much to say about it, other than that it’s there, although it really helps to get the HD star out of the field. 

It was now well after 3 AM. I’d spent six hours of traipsing up and down a ladder, in the middle of the night, looking at objects that, not that long ago, would have been beyond the capabilities of amateur telescopes.

Mark was packing up; I had no hesitation in doing so myself. It had been an exhilarating return to big-scope observing. My feet (and, frankly, the rest of me) hurt quite a bit, having been forced into positions that 54-year-old joints shouldn’t be required to hold, on a somewhat-wobbly ladder that nonetheless provided a measure of comfort from the usual narrow rungs. It was always nice to have an observing session reach a natural end, one that didn’t leave me thinking of “one last object,” and this one certainly fit that bill. I’d satisfied a need for distant starlight from obscure corners of the universe, and other, future nights offered further opportunities.

II. As good as the night of the 23rd had been, the next night might’ve been even better.

It’s a cardinal sin in astronomy to leave one’s optics in a car all day if it can be avoided; letting the mirrors heat up in a closed vehicle just means that the necessary cooling-down needed for best viewing would take far longer. But I wasn’t about to unpack the whole Flex only to reload the monster Obsession later in the day—certainly not with my foot only at 80% recovery. I could arrive at Linslaw earlier and get the cooling-down started sooner instead. (I really need to get the cooling fan—perhaps more than one!—set up and running on the mirror box.)

My agenda was a continuation of the previous night. I had a tendency to make an observing list that was far too extensive for one night, or even for a single entire dark run, so I had plenty of targets to choose from, sorted numerous ways: by object type (if I felt I was neglecting one, or just for variety), by expected visibility rating (1 being easiest, 5 most difficult; this was useful if the conditions were either spectacular or marginal), or, as I usually had them sorted, by constellation (so that I would be able to work along the meridian, where objects were at their highest in the sky and thus most clear of the obscuring effects of the Earth’s atmosphere).

Despite being largely “past their prime,” I began the evening with some of the last of the summer globulars. M55 was still in good position, and was (as always) stunning; I also stopped by NGC 6366 and M14 in Ophiuchus, and M30/Palomar 12/NGC 6907 in Capricornus. NGC 6908, an edge-on galaxy seemingly “attached” to one of 6907’s arms, was also easily visible. I even turned northward to Cepheus and NGC 6946, the so-called Fireworks Galaxy.

It was just myself, Jerry, and Mark at Linslaw on this particular night—and a fine one it turned out to be, despite the unusually-low SQM numbers. 21.4 didn’t do it justice, but that was the reading from the 11:00 hour.

In setting my agenda, I had added a number of galaxies in the oft-ignored constellation Equuleus, the dimmest constellation in the Northern Hemisphere and the second-smallest of all the 88 constellations. As Equuleus was just about to reach the meridian, this was the best place to start.

MOON: 29 days (set at 7:00 PM; 1% illuminated)
SQM: 21.4 (too low?)
NELM: not checked
WEATHER CONDITIONS: temps to 53F; no dew; breezy later; chilly; detailed Milky Way
All observations: 20″ f/5 Obsession Dob, 14mm ES 82˚ eyepiece (181x, 0.45˚ TFOV) or 7mm TeleVue Nagler (363x, 0.21˚ TFOV) unless otherwise noted

UGC 11671 (Equ):
 UGC 11671 in Equuleus is a bizarre peculiar galaxy that in photographs resembles a backward pair of parentheses touching in the middle, and it is in contact with a 10.5-magnitude star in a field of several other fairly bright stars. UGC 11671 is a roughly triangular-ish glow that seems to be stronger on the F side, and is about 0.75’ per side. The star that’s touching the galaxies on the N (I suspect this is an interacting pair rather than a completed merger) is 9th magnitude and has N slightly F it by 1.25’ an 11.5-magnitude star, and that star has 1.75’ F slightly S of it another 10.5-magnitude star; the 11.5-magnitude star also has a 13th-magnitude star N very very slightly F it by 1.5’. The star that’s in contact with the galaxies also has S slightly P it by 1.5’ a 15th-magnitude star. The brightest star in the field is S somewhat P the galaxies by 10’.  The S edge of the galaxies is a little more ragged, less evenly-illuminated that the rest. With the 7mm Nagler, there’s a brighter non-stellar spot visible on the S end of the P galaxy, and the more F of the pair has a noticeably-brighter strip that runs parallel to the F edge; that strip of brightness is fairly obvious but not greatly brighter than the rest of the galaxy. An interesting object!

My gripe about the ladder continued; this galaxy was also at just the wrong altitude for comfortable viewing. It didn’t help that the ladder was also just up against the scope, so that even my heartbeat made the eyepiece view vibrate. The seeing, however, was quite excellent, even without the 20-inch mirror being fully cooled; I began to think I’d even be able to use my 4.8mm Nagler on some of these objects if the seeing held.

Writing note: the auto-transcriber on my voice notes transcribed “Equuleus” as “a cool ass.”

I lingered in Equuleus a bit longer, to check out a fine field of small galaxies there. Although I had several other denizen galaxies of the Little Horse on my list, I also had plenty of other objects elsewhere in the sky to get to; rather than “mop up” all of my targets in Equuleus, I picked up a few and then moved along, saving some for the next night/Moondark phase/autumn season.

UGCs 11700, 11694; PGC 66324 (Equ): This is a field of little galaxies here in Equuleus, but the main attraction here, even though it’s not the brightest in the field, is UGC 11700. It lies 4.5’ due N of the vertex and brightest star of a little checkmark of four stars that runs P slightly N from that vertex for one star and N slightly F for the other two. The galaxy is definitely a beneficiary of averted vision; it’s 0.75’ x 0.5’, elongated N-S, and not well defined; it has a notable core and possibly a very, very faint stellar nucleus, as well as a threshold star on the NP. 1.3’ N very slightly F is the brighter of a pair, which is 14th magnitude and has a 15.5-magnitude star about 10” N slightly P it.  The brightest star in the field is about 16’ F slightly N of the galaxy and is 9th magnitude. The vertex of that little checkmark is 4.5’ S of the galaxy and is 11.5 magnitude; the star P very slightly N of it by 0.67’ is 13th magnitude; N slightly F the vertex by 0.75’ is a 13.5-magnitude star, and 0.75’ N slightly F that star is a 12th-magnitude star. 5’ due N of the galaxy is an 11.5-magnitude star, and then from the galaxy 8’ P very slightly N is an 11.5-magnitude star; N very slightly F that star by 2.3’ is another galaxy [PGC 66324]: this one is a lot fainter and much more diffuse than UGC 11700, and has a 15.5-magnitude star 0.75’ SP it. This galaxy is not well-defined; it may have a little bit of NP-SF elongation, perhaps 0.5’ x 0.3’, but not much in the way of central concentration. From that 11.5-magnitude star S by 9’ is the S-most vertex of an isosceles triangle; that star is 12.5 magnitude and is on the NF edge of another galaxy [UGC 11694] that’s brighter than the other two by a considerable margin, although it’s not particularly well defined; this one is about 0.67’ x 0.5’ and is elongated SP-NF, and has a brighter core region that really is distracted from by that star on the edge, which kind of overwhelms most of it (averted vision really helps bring out that brighter core). From that star on the galaxy’s edge NP by 1.75’ is an 12th-magnitude star, and there’s another 12th-magnitude star N of that star by 2.25’. so we are gonna go up to 7mm and see what we get; this is a nice little field of galaxies up here in Equuleus. OK I hope I can still be heard on the recording. In the 7mm, there’s definitely a stellar nucleus to UGC 11700. That’s a decent little galaxy as tiny galaxies go; it’s better defined at this magnification. [PGC 66324] has a broadly concentrated core and there’s more halo visible at 7mm; it stands out better at the higher magnification. There’s also a nucleus to [UGC 11694]; it too is better defined, although the star is mucking up the view, of course. It has a small, distinct, brighter core and an averted-vision nucleus.

The seeing was already noticeably softer than when I first started. And my legs were already showing the wear and tear of the previous night’s observing session, in addition to the discomfort they might be feeling from this night’s activity. Adrenaline would carry me for a while, but I wasn’t sure I could do (essentially) an all-nighter such as the night before.

I had given the September presentation at the meeting of the Salem astronomy club, NightSky45; it was an encore performance of my previous EAS talk “Forgotten Gems of the Autumn Sky. Among those “forgotten gems” was NGC 663 in Cassiopeia, one of a number of bright open clusters on that constellation’s eastern side. One of my slides was a wide-field photograph of NGC 663 and several nearby clusters, and one of those clusters was the dim, rich blast of star-powder catalogued as IC 166. Seeing that cluster in my slideshow was intriguing; I love the really-rich-but-dim type of open cluster (NGC 7789 in Cassiopeia, on the western side, was the prototype of these agglomerations of sibling stars), and I had added it immediately to my list. With Cassiopeia well above the sandstone crag, now was a good time to observe it.

IC 166 (Cas): From faint, difficult galaxies to a faint, difficult open cluster; this is the surprisingly dim glow of IC 166 in Cassiopeia, and at 112 X it is mostly background glow. It’s 6’ across, round, and mostly unresolved, even in the 20-inch. It has a string of eleven stars running largely N slightly P-S slightly F through what might roughly be the middle of it; the brightest of these stars is the obvious cluster lucida, which is 13th magnitude and lies just F where the center of the cluster would be. From the lucida 2’ N very slightly P is a 16th-magnitude star that has 5” P somewhat S of it a 15th-magnitude star. SF the lucida by 1.25’ is a 14.5-magnitude star. 0.75’ N somewhat P the lucida is a 16th-magnitude star that actually is not steadily held; from the lucida P by 10” and S slightly F (also by 10”) are two 15.5-magnitude stars. On the P edge of the cluster, 3.25’ from the lucida, is a 12th-magnitude star that I don’t think is a cluster member; there’s also a pair of 11th-magnitude stars, separated by 0.75’; the F-most of those is the right-angle vertex of a little triangle that includes the other 11th-magnitude star; that star is 3.67’ N slightly P the lucida; the other 11th-magnitude star lies P very very slightly S of it by 1’, and it also has a 14th-magnitude star 0.5’ S very slightly F. The brightest star in the field is 7’ P very slightly S of the lucida; that star is 9th magnitude and has a 12th-magnitude star P very slightly N of it by 0.67’. The 7mm Nagler really doesn’t help the glow much contrast-wise, but it does spread out that slate of stars overlaid across it: there’s the lucida, the one P slightly N it, and the one S very very slightly F it by 10”; it’s probably more like 0.25’, and then there is, 0.67’ S slightly F of the lucida, a very very tight pair; those are slightly fainter than the ones that are closer to the lucida; there’s the 15th/16th-magnitude pair on the N edge that I mentioned previously (there are actually about four of them on that edge); the 16th-magnitude star also has F it two extremely-faint stars of 16.5 or 17th magnitude, and those are separated N-S by 0.3’. Even at this magnification that background glow is unresolved, but that’s also about the only thing that identifies this as a cluster as opposed to an asterism of really faint stars. This is obviously an incredibly rich cluster with all that background glow; it’s pretty poorly detached up here in the dense Cassiopeia Milky Way. If all of its “brighter” stars are cluster members, along with the background glow, then it has a quite a range of magnitudes in it. This is a really fascinating object! 

I managed to go back to faint galaxies without leaving Cassiopeia, tracking down an object I had seen several times but hadn’t taken notes on. Maffei 1 was discovered only in 1968, along with Maffei 2; these gigantic elliptical galaxies are difficult optical targets, as they lie within the rich Cassiopeia Milky Way (as seen from Earth), and were discovered via infrared survey plates.

I had seen Maffei 1 several times before, all with the 12.5-inch scope. I was surprised to see it so weakly in the Obsession.

Maffei 1; Czernik 11 (Cas): Back to difficult galaxies, and one that I’ve seen much better in somewhat lesser conditions with a smaller scope. I had to use the 24mm Meade 5000 SWA to starhop from the Double Cluster; I’m probably the only person to use the spectacular Double Cluster to stop at something insignificant like this. Maffei 1lies amidst the poor, asterism-like open cluster Czernik 11, which—to be entirely honest—looks slightly like a miniature Draco or cosmic sperm cell. The galaxy is very elusive tonight, but I can definitely tell that there’s something there. I’m surprised it’s this difficult, as I’ve seen it before much more easily than this; it’s a very faint, indistinct, unconcentrated glow, 0.5’ x 0.3’, and elongated P-F. The NP end of Czernik 11 is a little pentagon, and the “tail” of the cluster trails away to the SF, then loops NF, and then SF again; the whole thing is about 4.5’ long. The 12th-magnitude cluster lucida is part of that pentagon, and lies SP Maffei 1 by 0.5’. N slightly F the lucida by 0.5’ is a 14th-magnitude star; NP that star by 0.67’ is a 13.5-magnitude star; from that second one P by 1’ is a 12th-magnitude star that’s just a shade dimmer than the lucida, and then from that star S slightly P by 1’ is a 13.5-magnitude star. 1’ S somewhat F the lucida is the brighter of a pair, which is 14th magnitude and has 0.3’ SF it a 14.5-magnitude star. I’m not going to note the whole of Czernik 11, but it has along its tail end, toward the F, some unresolved glow, and it’s kind of interesting that follows the path of the brighter stars. The brightest star in the field is 12’ P somewhat N of the lucida and is 9th magnitude. In the 7mm, the galaxy is much more obvious but still quite difficult; direct vision shows it better, but it’s very unconcentrated and poorly defined, with no real central concentration at all. (In previous observations of it, from the Mill Creek Yoga Retreat and elsewhere, I’ve observed a somewhat brighter core in it.)  I doubt Maffei 2 will even be visible considering how tenuous this sighting of Maffei 1 has been.

And yet Maffei 2 was visible, if only just.

Maffei 2 (Cas): The two Maffei galaxies are really difficult tonight; I’m sure this one’s always difficult—this is Maffei 2, and it is very much an averted vision object 90% of the time; I’m only getting occasional flashes of it in direct vision, but it’s definitely there. It’s situated between two little triangles, an isosceles right triangle made up of three 14.5-magnitude stars, and then a little perfect isosceles triangle P the galaxy. The galaxy might actually have some visible central brightening to it, and it helps to look toward the P to see it; it’s round, about 0.3’ diameter. The right-angle vertex of the triangle to the F is about 2’ to the F somewhat N the galaxy, and then that star has 1.67’ due F it the second star; the third lies due S of the right-angle vertex by the same distance. P somewhat N of the galaxy by 2.25’ is the F star at the base of the isosceles triangle; that star is the brightest of the three in the triangle and is 12th magnitude; P that star by 1’ is a 13th-magnitude star, and then from that 12th-magnitude star 2’ N very very slightly P is a 12.5-magnitude star; from that star 4’ NP is the brightest in the field, which is 8.5 magnitude and has N of it by 1.25’ a 13th-magnitude star. With the 7mm, there’s a threshold star F slightly N of the galaxy by less than 0.25’. Even at this magnification, it takes a break in the transparency for the galaxy to clearly appear. That is as difficult as anything I’ve ever observed.

Jerry laughed at my last comment, repeating it out loud as if he found it unbelievable. I suspect that he, and the other EAS Irregulars, were continually amused by my target choices, and how I often described faint objects as “surprisingly easy.”

The pain in my feet forced me to sit for several minutes; I’d spent too much time on objects that were in a bad position for my ladder.

Transcription note: the app transcribed “ridiculously hard” as “rude Deculus Lee hard.” I’m still trying to figure that one out.

In doing some examination of the POSS plates, I discovered that Maffei 2 is much stronger on the red plate than on the blue—no doubt due to its infrared emission and the reddening of the galactic plane. This would, of course, also help explain why a caveman with red-deficient vision would have a difficult time seeing the galaxy. (Maffei 1 is more equal between the red and blue plates.)

I stayed in the northern reaches for my next object, Böhm-Vitense 5-3. This planetary had been on my radar since January; now, on the other side of summer, I was finally able to track it down. The seeing helped, having suddenly become particularly solid.

Böhm-Vitense 5-3 (PK 131-05.1; Per): This planetary nebula is surprisingly visible with no filter, very faint up here in Perseus. It’s a very round, ghostly nebula which looks like, even if this magnification, it might be hinting at annularity. The nebula itself is about 0.5’ around, maybe a little less; it has a distracting 11th-magnitude star due F by 0.75’.  In averted vision, it seems like the rim is a little stronger on the N and NF edges. The nebula forms a roughly-equilateral triangle with that star to the F and a 13th-magnitude star N slightly F the nebula by 0.67’; but then 1’ N very slightly P the 13th-magnitude star is an 11.5-magnitude star, so the nebula also forms the SP tine of a small ‘y’ pattern that points N. There are a number of bright stars in the field, of which the brightest is 8.5 magnitude and lies S somewhat F the nebula by 15’, and then S somewhat P the nebula by 6.5’ is a 9th-magnitude star; the 8.5-magnitude star is in the middle of what I would call kind of a “shepherd’s crook” asterism of seven stars that’s oriented P-F and spans 3.5’, of which the 8.5-magnitude star is both in the middle and the most S of the seven. In the 7mm… the nebula really pops out at this magnification. The annulus is surprisingly much easier to see here. The rim does not seem to be perfectly defined; the outer edge of the nebula is fuzzy. No central star or color or anything is visible. Adding the O-III filter: I’m still not really picking up any detail on this that I couldn’t get before, although… yeah, it’s almost as if now it’s the S edge of the rim that’s the brighter, if only just slightly. 

This was my first opportunity to use the Astronomik O-III filter that I’d acquired while recovering from surgery. I was careful not to use it in the 14mm Explore, which had eaten the threads on my old Lumicon O-III on the cold February night on which I’d originally planned to observe B-V 5-3. The filter was darker than I’d recalled from using Dan’s Astronomik, although I was in a painful position on the ladder—practically on tiptoe—and didn’t have the patience to keep observing much after installing the filter.

My energy level wasn’t quite as high as it had been the night before; I was stopping between objects to sit and give my aching legs and feet breaks. At one point I almost dozed off in my chair—I didn’t feel tired, but I was obviously running out of steam.

Autumn nights aren’t to be wasted. I pressed onward, lower in the south, with a couple of flat galaxy fields in Cetus. But first, I spent some time with the excellent NGC 908, one of two grand spirals in Cetus that easily showed spiral structure (we had looked at the other, NGC 157, in Jerry’s scope earlier). And with Aries fully above the horizon, I had time to stop in on Uranus as well.

Instead of two moons of Uranus, high power revealed what might well have been three—Oberon seemed to have joined Titania and Ariel on the night. It was an extremely tentative sighting that even the Delos wouldn’t have pulled out further (I don’t think), but at least three times, I noted a faint speckle of light near the position indicated on Sky Safari.

What the hell—I was roughly in the general vicinity of a longtime quarry; why not go for it? Van den Burgh 16 is a reflection nebula in extreme eastern Aries, near the border with Taurus. I had first noted this little nebula as a small green block on the first edition of Sky Atlas 2000.0, but had always assumed it to be out of the grasp of any of my scopes in inferior skies. Here at Linslaw, with the 20-inch? If I was ever going to get a look at the nebula, it would be here.

After a few moments of panning around, I located the starfield, and… there it was.

A faint, gossamer glow surrounded a 9th-magnitude star to the P and F sides—it was considerably tenuous but undoubtedly there. I had been fascinated with the identity of this small cloud of silicate dusts for decades, and I had it in my eyepiece…

… at a level at which I could barely stand on the ladder.

I couldn’t take notes on the nebula, as it hurt too much to stoop at the knees, and it put too much pressure on my feet. I could only occasionally stand on tiptoe on a lower step in order to peer into the eyepiece. And the nebula was only rising, so it would be getting higher and less accessible as the night went on.

I had to abandon taking notes on vdB 16. Perhaps I would get a chance later in the autumn or winter if the skies cleared, but for now, I had to let it go. So back to the flat galaxies it was.

PGC 6966 (Cet): My first flat galaxy of the night, and it’s a really surprisingly-good one considering it’s “only” got a PGC number. This is PGC 6966 in Cetus, and it’s in a fairly-barren field, although there are a number of the stars in the field that are actually considerably bright. 

I went to move the ladder for better positioning, bumped the scope, and then whacked my eyepiece in the bargain. My recorder app’s transcription routine has learned my favorite swear words by heart, as it had plenty of opportunity to demonstrate while I inspected the damage (there was none, fortunately) and struggled to recapture the galaxy. The wind rumble on my recording added to the chaos, as it picked up in the cool night air.

After much searching and swearing, I’ve managed to recover the galaxy–this is PGC 6966 in Cetus, one of the better flat galaxies that I’ve seen recently. It’s a direct-vision object, very easy, in a fairly-barren field, although the stars that are present in the field are a little bit on the brighter side of things. The galaxy’s elongated about 165˚ PA, so N very slightly P-S very slightly F. It’s impressively large and wider in the middle, 2.25’ x 0.3’, with some moderate central brightening and a quite-well defined halo. About 1/3 of the way from the S end to the N, it has a 15th-magnitude star just off the F side.  5.5’ S slightly F is a 10.5-magnitude star; NF by 3.25’ is an 11th-magnitude star. Due P the galaxy by 8’ is a 10.5-magnitude star that has a 9.5-magnitude star N of it by 6.5’, a 10th-magnitude star 8’ P slightly S of it, and a 9.5-magnitude star S slightly P it by 15’.  In the 7mm Nagler: that’s a great flat galaxy there! It’s definitely irregular in brightness, but very well defined at this magnification. I don’t honestly know how this one got missed by, say, the Herschels or somebody, because this is a really impressive galaxy; it’s much brighter than some of the NGCs I’ve seen. The middle 1’ is considerably brighter than the rest; that might be partly illusory due to the presence of that star in the F side, but I don’t think so—I think that’s legit central brightening there, with the only the ends of the spiral arms fading away. 

I somehow missed PGCs 1071479 and 1071790, just outside the N-NP end of 6966.

Jerry headed out, having finished packing up while I was taking notes on PGC 6966. Given the uptick in the wind, it was a sensible move… certainly more sensible than staying to find one more galaxy. The wind was almost blustery by now, and the seeing and transparency were deteriorating. I took a few minutes’ break; Mark was wrapping up his imaging for the night.

I had to hold on to the Obsession to keep it from blowing off-target; this made it difficult to swap eyepieces. And, of course, I was in between steps on the ladder. (I can’t really call them rungs, so….)

UGCA 14; PGCs 2800, 986866 (Cet): UGCA 14 shares the field with a brighter highly-inclined galaxy that shows some central concentration; UGCA 14 at times looks to be the larger of the two, although quite a bit fainter. It’s of course very thin and pretty uniformly faint. (There was a second there where I thought I saw a nucleus, but no….) The galaxy is elongated almost perfectly P-F, 90° PA, and spans 1.67’ x 0.3’. The galaxy to the N [PGC 2800] is angled about 10˚ PA, with a small, brighter core and the occasional flash of a nucleus that’s not helped by having a 15.5-magnitude star 2’ F very slightly N. The two galaxies are about 4’ apart, center-to-center. There is definitely a nucleus to this brighter one; it’s 1.0’ x 0.3’ and I thought I saw…yeah, 5.5’ N very slightly F that galaxy is an evenly-faint, very small glow [PGC 986866], 0.25’ diameter, that has a 14th-magnitude star F slightly N of it by 1.75’. SP UGCA 14 is a Sagitta-like asterism with a 9th-magnitude star at the tip; 2.67’ F somewhat S of that star is an 11th-magnitude star, and then 5’ F slightly S of that star is a 12th-magnitude star that has a 13th-magnitude star 1.25’ S very very slightly P it. UGCA 14 is actually a little harder to discern in the 7mm, and it’s in a bad position with me on the ladder, so I’m going to have to curtail the observation. The galaxy may have a threshold star off the P end.

I came down from the ladder with something like a sense of relief. It’d been an excellent night observation-wise, but I was in legitimate pain from the knees down. Had it been worth it?


Packing up was slow; Mark asked if it was OK to proceed ahead. Of course—I didn’t expect anyone to wait up for me. The president should always be the last one out anyway, as I’d been insisting since my southern Illinois days. Mark headed down the mountain as I was getting my ladder, table, truss poles, and other sundries stowed, having waited until I got the huge mirror/rocker box pairing loaded safely.

After finishing load-in, I did a once-around of the field with my headlamp, to make sure that nothing had been left by any of us. Satisfied, I turned my car-seat heater on, backed into the gravelled clearing at the base of the crag, and headed slowly down the mountain toward home.

III. A week passed, during which only one night was clear; the others were either cloudy or smoked out, as the Waldo Lake fire(s) was/were still out of control. I skipped the one clear night, so as to give my extremities a well-deserved respite. Our monthly-ish First Quarter Friday public outreach night was hazy, but cleared up well enough for me to show the stragglers Neptune and Triton, as well as a superb transit of Io across Jupiter, with Io becoming visible on the planet’s face as it reached the darkened limb (shout-out to EAS’ Aneesa Haq for spotting both Triton and Io before anyone else!). I had planned to go to Linslaw after FQF broke up for the night, but was too wiped out by the time I got the Obsession torn down and loaded; Dan B and Mark had gone to Linslaw (Dan at the lower site, as he was still feeling the aftereffects of his illness), but their early reports seemed to indicate that conditions weren’t worth the drive. I was almost relieved, and let myself relax enough so that when Dan texted and said that conditions had turned excellent, I was already mentally checked-out.

Finally, on the night of the actual First Quarter Moon—and less than two days before I returned to work—personal energy and sky conditions converged to summon me out to Linslaw again. With my agenda already at hand, I was prepared to give the early autumn dark-sky run one last charge.

Mark was in Arizona; Jerry and Kathy had spent the day traveling and were taking the night off, and Loren was still in North Dakota. So it was just me and Dan up on the crag as sunset began… and the two hunters who’d left their truck parked at the top and ventured down the hillside to pursue God knows what. (The night before, Dan had seen a mountain lion chasing a raccoon across the road up—the first time we’d seen any major fauna along that stretch of gravel road.)

We called down to make sure that they knew we were there, and went ahead with setting up. It was while I was collimating the Obsession that the hunters made it back to their truck; they were somewhat irritated that we’d scared off their deer by shouting down to them, although they were clearly swallowing some of their irritation. We apologized, having been unaware that it was deer season. The two of them—father and son, most likely—seemed to let it go, asking that if we used the site, not to make so much noise during the month that deer were fair game. Fair enough. We talked for a few minutes before they drove off; I could only imagine their conversation as they drove back home.

The Moon was still an inescapable presence as I finished collimating the optics and aligning the Telrad to the scope’s optical path. I checked out the terminator, the line between light and shadow on the non-Full Moon, where the craters are in their starkest relief—with the big scope, this was painfully akin to having an optometrist’s light shone in one’s eyes during an exam, and would prevent deep-sky observing for at least a half-hour while dark adaptation slowly recovered from the assault. No matter; we had 3.5 hours between sunset and moonset.

The Moon was in Sagittarius, right in the thick of the Milky Way action; I scoped out some of the bright globulars at a greater remove from the immediate vicinity of our primary natural satellite, also spending significant time on the available planets and their moons. Conditions weren’t great: the seeing was soft, the transparency diminished by smoke or a damp marine layer. Possibly both.

Nonetheless, it was while observing Neptune and Triton, a half-hour before Moonset, that I stumbled across what would become my first object of the night—an entirely serendipitous right-place/right-time “discovery” that would be a harbinger of the observing night ahead.

MOON: 7 days (set at 10:23 PM; 41% illuminated)
SEEING: 6, 7
SQM: 21.4
NELM: not checked
WEATHER CONDITIONS: temps to 58F; slight dew later; air still and hazy; mild but clammy 
All observations: 20″ f/5 Obsession Dob, 14mm ES 82˚ eyepiece (181x, 0.45˚ TFOV) or 7mm TeleVue Nagler (363x, 0.21˚ TFOV) unless otherwise noted

PGC 71913 (MCG-1-60-14; Aqr): I stumbled across this surprisingly-bright little galaxy while observing Neptune and Triton, and it’s easily visible despite the presence of the nearly First Quarter Moon
. The galaxy is 0.5’ NF an 11.5-magnitude star and is roundish, 0.5’ diameter, with a pretty well defined halo and very broad central concentration, although it does come to an almost-stellar nucleus. The halo seems to be brighter along its S edge. From the 11.5-magnitude star N slightly P by 2.75’ is a 12th-magnitude star that’s just slightly dimmer than the one next to the galaxy, and then from that star N somewhat P by 1.75’ is a 13th-magnitude star; Neptune is 4’ S somewhat F the 11.5-magnitude star; Triton is 10” N very slightly P Neptune ( I believe it was listed as 13.6 magnitude right now; obviously, with Neptune so close, it’s a bit of a challenge). 

Although this first galaxy was in Aquarius, I spent the majority of the night working through Pegasus, Pisces, and Cetus; picking off the galaxies in Equuleus would have to resume at some unspecified later time. Sunset long ago faded and moonset just finished, it was time to plow ahead on my agenda, mediocre conditions be damned.

UGC 11964; NGC 7241 (Peg): This galaxy pair consists of a flat galaxy, UGC 11964, and its much larger, very bright and impressive companion NGC 7241 in Pegasus; we’ll start with U11964 because it’s the target here. It’s a very, very difficult, phantasmic streak of 1.0’ x … I’m barely even capable of measuring it; it’s only a few arcseconds thick at best, maybe 7” ? The galaxy is oriented in 45˚ PA. On the NF end of the galaxy, just P that and very, very slightly N, there’s a threshold star that just flickers into view every now and then and that’s interfering with the observation; it also doesn’t help that there’s a 10.5-magnitude star 2.25’ F somewhat S. There’s no detail at all discernible with this galaxy; it’s just hovering on the verge of visibility. It does have, F slightly N of it by 2.25’, a 15th-magnitude star. 3.75’ NP the galaxy is the F-most in a line of three, all of which are 13th magnitude, and that line is 1.5’ long and runs NP from that star; the second star is 0.3’ NP the first, and the third star is along that same line 0.75’ from the second. no we’re 1.75’ S of the first (F-most) star in that line is another of 13th magnitude, and then, again from the first star in that line of three, 2.3’ SP is a 10.5-magnitude star. UGC 11964 has just about disappeared at the moment; but 3.25’ NF the 10.5-magnitude star that’s F somewhat S of it is an 11.5-magnitude star; that star has a 12.5-magnitude star N slightly F it by 2.3’, NGC 7412 is almost directly between those two stars (it’s a little bit P those two but parallel) and stretches nearly from one to the other; the star on the N end is just a little bit F the actual N end of the galaxy; the star in the S end, the 11.5-magnitude star, is also the P-most vertex of a triangle and has a 14th-magnitude star SF it by 0.5’; the 11.5-magnitude star has a 14.5-magnitude star due F it by 0.75’ and a 13.5-magnitude star N somewhat P it by 1.5’; that 13.5-magnitude star has a 16th-magnitude star N somewhat P it by 0.5’. This galaxy is disrupted-looking or distorted; it’s obviously a spiral, but the core is skewed toward the S end; the galaxy is 2.25’ x 0.67’ and that 0.67’, the widest part of it, is down closer to the 11.5-magnitude star; the core there is is 0.5’ long and much brighter than the halo; that 11.5-magnitude star is just off the southern tip of the core and the galaxy slightly extends farther S beyond that star. There’s no nucleus visible on this one; the halo is pretty well defined, almost teardrop-shaped. I’ve spent more time on that one than the flat galaxy because it’s just got much more detail; the flat galaxy is not showing well at all. The 7mm is too much power for the flat galaxy under these conditions; that’s definitely a threshold star there on the NF edge, but the galaxy is otherwise barely visible now at this magnification. The NGC galaxy is also somewhat washed out, although there seems to be mottling indistinctly visible. 

Given how weak UGC 11964 appeared on the POSS plates, I was impressed to have seen it at all. Finding it had to be considered something of a triumph.

My next two targets had been on my agenda for years; in fact, UGC 12281 was the very first flat galaxy I had searched for, and was the first time I’d ever actually heard of specific “flat galaxies.” I had seen it a couple of times over the years, but never with the certainty I wanted in order to take notes on it. It bedeviled me yet again on this night, a razor-slash ghost of light in a field with several distracting bright stars. It may take a perfect night before I can document UGC 12281 to my satisfaction.

The other target was PGC 70994, the X-shaped ring galaxy in Pisces. How can a ring-shaped object also be X-shaped? Because the “hub” or core of the galaxy is elongated from the collision that formed the ring, and the ring itself is oriented edge-on (like a flat galaxy!) to our line of sight. I’d also seen this one before, twice, but it was extremely tenuous both times; nonetheless, I have a suspicion that this object, like UGC 12281, will impress and show more detail under better conditions than I had this first weekend of October.

Over the course of the last year or so, I’d started wondering if my transparency ratings at Linslaw were too generous. Certainly, on nights where the SQM read 21.7+, there was no reason to suspect that this was the case, as on those nights the Milky Way was overflowing with dimension and detail (these nights corresponded with the dry summer season in the Valley). But in the spring and autumn, especially lower in declination, the sky seemed somewhat murkier than in the summer; the site’s proximity to the ocean and the marine layer no doubt had a greater effect than I may have taken into account on previous occasions. Maybe it was time for me to start assessing the transparency with two different ratings, or perhaps simply to revise the number down to an average of the two halves of the sky. (My notes for this set of entries don’t factor this into the transparency ratings.)

There is some overlap between the Hickson and Shakhbazian catalogues; some of the Hicksons were, for various reasons, included in the Shakhbazian catalogue. Hickson 97 was one such—it’s also known as Shakhbazian 30. I did not know this until much later, as I was cleaning up my transcriptions. Regardless of the name, this was one of the more enjoyable observations of the whole run.

ICs 5357, 5356, 5351, 5359 (Hickson 97; Shakhbazian 30; Psc):
 So this is Hickson 97, which brackets a 10.5-magnitude star that has 3.25’ due P it a 13th-magnitude star that has just 10” N of it a 14th-magnitude star. 2.5’ P somewhat N the 10.5-magnitude star is the largest and brightest of the Hickson galaxies [IC 5357], which is 0.75’ x 0.5’, with a well-defined halo, a suddenly-brighter core and a stellar nucleus; the galaxy is elongated N very slightly P-S very slightly F, about 165˚ PA. 3.5’ due S of that galaxy is a second [IC 5356] that is well defined, considerably fainter, and roundish, at 0.5’ diameter, with a large (compared to the halo), slightly-brighter core and a trace of a stellar nucleus visible in averted vision. It has 0.75’ S slightly P it a 15th-magnitude star that has another 15th-magnitude star 0.75’ S very slightly F it; that last star is S of the galaxy by 1.3’. That galaxy also has 0.75’ NF it a 15th-magnitude star that has a 14.5-magnitude star 0.75’ NF it. I made a mistake earlier: I said this group surrounds a 10.5-magnitude star and a 13th-magnitude star due P the 10.5-magnitude star by 3.25’, and that 13th-magnitude star had a fainter star N of it—that fainter star is actually the third galaxy in the Hickson [IC 5351], which is quite small; it’s no more than 0.3’ and is pretty well defined, but it has kind of a substantial stellar nucleus to it, which is why I mistook it for a star in the poor transparency; the halo wasn’t very clear and I just saw the nucleus to it, without much of a core. The fourth galaxy [IC 5359; PGC 72430; MCG-1-60-36] was there a minute ago, and is an edge-on streak; it’s a third of the way from that previously-noted 10.5-magnitude star to a 10th-magnitude star that’s 5’ F very slightly N of the 10.5-magnitude star; the 10th-magnitude star also has 0.75’ NP it a 12th-magnitude star. That last galaxy, the edge-on, is barely visible and is 1.5’ F the 10.5-magnitude star; it’s 1.0’ x 0.1’, and is elongated in 135˚ PA. It may have a very small core/nucleus region to it. The 7mm really brings out the first three galaxies; [IC 5356] is elongated in 45° PA and is about 3:2 elongation; the fourth galaxy is almost impossible at the moment. There’s not much in the way of detail on the edge-on, but it does seem a very slight bit brighter in the center.

I missed two photographically-obvious PGC galaxies to the SF: PGCs 72461 and 72457.

I took another short break after Hickson 97 to let my feet rest; my non-repaired left foot hurt even more than the reconstructed right. One additional fix to the ladder: adding a pad to the top step, so that I could sit/kneel on it more comfortably. I also needed to ask Jerry about the “foot shelves” or removable steps he built for his old observing ladder.

My observing agenda often consists primarily of small objects, faint objects, and small faint objects, with a few larger or brighter targets thrown in for either specific reasons or for a break from the eye-straining majority. I’d included NGC 157 and NGC 908 in Cetus for just this reason (and because the spiral structure was obviously visible), but had already observed those the night before. I had also observed my next target previously, but included it on my list in order to take better notes on it… and because it was something of a showpiece in the larger optics of the Obsession.

NGCs 128, 130, 127, 126, 125 (Psc): If you keep looking for more-obscure stuff, your patience is eventually rewarded with something that’s impressive: this is the NGC 128 group in Pisces, and there are at least five galaxies here that are fairly easy to pick up. NGC 128 is a bright, well defined, somewhat-irregular galaxy that’s 2’ long, with tapering, fading arms; it’s oriented in 180˚ PA, due N-S, with a substellar nucleus; it’s 2.0’ x 0.3’, the core making up the middle 0.75’ of the galaxy (I know it’s got that irregular, box-shaped core, but at 181x I don’t really get a good sense of this). NF NGC 128 by 1’ is a tiny fuzzy spot [NGC 130] with what looks like a stellar nucleus to it; 0.75’ NP 128 is another small round galaxy [NGC 127] that’s much more diffuse, with no central concentration to it; it’s fainter than the one NF; neither is more than 0.25’ around, but both are pretty well defined. 4.75’ S slightly F NGC 128 is a 12.5-magnitude star; there’s a 12th-magnitude star SP 128 by 3.25’, and then from that star 1.67’ S somewhat F is another galaxy [NGC 126]: this one is oriented in 120˚ PA, so N somewhat P-S somewhat F, and spans 0.5’ x 0.3’; it’s diffuse and poorly defined and has a very small, gradually-brighter core that’s only slightly brighter than the halo; it also has 1’ SF it a 15.5-magnitude star, which is a distraction from the galaxy. 7’ P very slightly S of NCC 128 is a fourth galaxy [NGC 125], which at first seemed to have some N-S elongation, but now seems to be more just roundish; it’s the second-brightest in this group and is 0.67’ in diameter, with a sudden, brighter core, a substellar nucleus, and a reasonably well-defined halo; S very slightly P it by 0.75’ is the more-N of a pair of 12.5-magnitude stars; these are separated by 0.3’, with the S one S slightly F the more-N one. Speaking of bright… there’s NGC 128 in the 7mm, which I think is actually too much power, because the little “ears” are really hard to see now; the other galaxies are much better, but those two are not looking so hot. Switching to the 10mm Delos… wow, the Delos really brightens things up! (I can’t get over how much better this eyepiece is than all of my other ones.) [NGC 125] really is quite a fine object; it’s got a really striking nucleus. [NGC 126] is really quite well defined here, in opposition to my previous comments. The two “ears” of 128 are not particularly easy at this magnification, but they are still noteworthy, especially in averted vision. An excellent group!

While I was describing NGCs 127 and 130, NGC 128’s “ears,” the entire crag lit up, as if hit by a helicopter searchlight; the light lasted for less than a second. Dan and I both gave startled shouts. A fireball meteor had burst over us! Dan had caught the tail end of it as it disintegrated, but I had only seen its flash on the ground and the upper end of the telescope.

It took more than a minute to get back to observing the NGC 128 group; my notes are full of stunned chatter between the two of us. Had I seen the meteor, I might no doubt have likened it to one of the 1998 Leonids that I had seen from Sapello, New Mexico, on a night when the meteors rained down like a Roman-candle fight between the gods. It surely would’ve been the brightest meteor I’d caught since then.

Strangely enough, despite knowing that my next target contained multiple galaxies, it didn’t connect with me that it might’ve been a Hickson Compact Group; when I went through my transcription, I simply wrote it up as if it was a group of unrelated galaxies. This meant that I also forgot to look for the fourth galaxy in the group (IC 184 obviously didn’t count due to its distance from the others), because one of the criteria of Hickson groups is that they have at least four members.

PGC 7557/MCG-1-6-22; PGCs 7553, 7550; IC 184 (Hickson 14; Cet): This is the PGC 7557 group in Cetus, in an area where you can’t swing a dead nutria without hitting a PGC galaxy of some size; these are a little bit difficult because they’re wedged in between a 9th-magnitude star to the S and an 8th-magnitude star to the N; those two stars are about 6’ apart, and the first galaxy [PGC 7557] is N very slightly F the 9th-magnitude star by 1.75. It’s the fainter of the two, 0.67’ x 0.25’, elongated N-S. It’s pretty diffuse, with very very little central concentration, although every now and then I do get a flash of something like a stellar nucleus there. The brighter of the two galaxies [PGC 7553] is N somewhat P the previous one by 2’, and is elongated… when we’re looking at these little faint guys it’s hard to tell, but I think it’s the NP-SF or some variant thereof. It’s bigger and better defined than the previous galaxy, 0.75’ x 0.3’, and considerably brighter, with some gradual central concentration up to a faint stellar nucleus. From the 8th-magnitude star 8’ N very slightly P is a 10.5-magnitude star, and that star has another galaxy [IC 184] N very slightly P it by 2.67’; this one is elongated roughly N-S, and may be the brightest of the bunch; it’s the most obvious, certainly, and has a gradually-brighter core and a faint stellar nucleus to it. With the 10mm Delos, [PGC 7553] really leaps out, but there’s another [PGC 7550] NP that one by 1.75’, a little tiny speck of a galaxy that’s pretty much an averted-vision object; it’s 0.25’ x 1.25’, maybe N-S elongated? There’s not much to it; it’s not very well concentrated, with no core or anything to latch on to. The galaxy well to the N of those three [IC 184] is quite impressive in the Delos; it’s a little thing and not very bright but it still shows up really well. It has an obvious nucleus and an elongated core and is quite well defined. (I do wish I could get the stars out of the field, those 8th- and 9th-magnitude stars.)

When I started observing Hickson 14, it was just barely at standing height—I could keep my feet on the ground while looking into the eyepiece. A couple of minutes into the observation, though, I needed about a quarter-step on the ladder.

From Hickson to Shakhbazian. This next might be my favorite observation of the whole run, and a target I’ll make multiple return trips to.

PGCs 8315, 8330, 8329, 8340, 8328, 96667 (Shakhbazian 317; Cet): Had it not been a great night already, this would have clinched it;
 this is Shakhbazian 317 in Cetus, and I am really impressed that it shows so well on a night when the transparency seems so poor. This is a very challenging string of galaxies beginning N of a 12.5-magnitude star and proceeding NF from there; or, rather, the 12.5-magnitude star has a 13th-magnitude star S very slightly P it by 2.75’, and then from the 12.5-magnitude star 2’ N very slightly F is the first of the galaxies [PGC 8315] in the string; this one is somewhat diffuse, but it does have either a very small brighter core or a substellar nucleus, possibly both; if it is both, then the core is not very bright. That galaxy is about 0.5’ in diameter and pretty well defined. 2.75’ NF that first galaxy by 2.75’ is the first of a pair of tiny galaxies; the first of these [PGC 8330] looks smaller than the other, maybe 0.25’ at best, with almost no central concentration at all. The next [PGC 8329] is F somewhat N of the previous; those two are separated only by 0.67’, and the second one is much the brighter; it’s 0.5’ in diameter, with a small, sudden, very slightly brighter core and a very faint stellar nucleus. From that galaxy 2.75’ NF is a 13th-magnitude star, and that star has 0.67’ S somewhat F it another small galaxy [PGC 8340]; this one is round, with a very slightly brighter small core and a very faint stellar nucleus. With the 10mm Delos, the nucleus is really popping out of [PGC 8315]. It looks like there’s another galaxy [PGC 8328] between [PGC 8315] and [PGC 8330]; there’s a very diffuse, very difficult faint (but not averted-vision) object there, about halfway between [PGC 8315] and [PGC 8330]; the nucleus is now really obvious in [PGC 8329]. There may actually be a second one [PGC 96667] there on the NF end, 1.3’ due S of [PGC 8340]; it’s very small, but has a distinct nucleus to it, and there may be a 16th-magnitude star just off the NF edge of it. So that’s six galaxies there; I know there are more that I could probably tweeze out with higher magnification on a more-transparent night, but that’s a fantastic sight nonetheless.

The seeing and transparency both visibly wavered while I was observing Shakhbazian 317; there might have been some largely-invisible cirrus or the like moving through Cetus at the time. The southern reaches of the sky seemed a bit hazy, but no worse than usual. The air was clammy, as if on the verge of dewfall, but that too was common here in the early fall.

I somehow missed PGC 8326, which was situated next to PGC 8328. I will, of course, have to revisit Shk 317 under better conditions regardless.

I had previously observed NGC 100 with EAS’ fine homemade 18-inch scope, but after observing fainter quarry for much of the evening, I was ready for something easier. I needed better notes on it anyway.

NGC 100 (Psc):
 NGC 100 is a very fine flat galaxy!  It’s about 3’ x 0.25’, oriented in 70˚ PA; it doesn’t have much in the way of central brightening, but it still looks mottled or irregular in brightness, and is well defined. Every so often I get a hint that the F side of the galaxy has a sharper cutoff; I won’t say if it’s a dust lane. The galaxy has a 13th-magnitude star 4.5’ SP it, and then 1.75’ S very slightly P the galaxy is a 15th-magnitude star. 10’ F somewhat S is the brightest in the field, which is 8th magnitude. P somewhat N by 5.5’ is a 12th-magnitude star. Along the major axis to the N, just outside the N end of the galaxy, is a 15.5-magnitude star that has another 15.5-magnitude star NP it by 1’; there are a lot of really faint stars in the near vicinity of the galaxy. 12’ P somewhat S of the galaxy by 12’ is a 10th-magnitude star that’s part of a long arc of nine; that star is third from N, and the arc starts at the P edge of the field and terminates S of the galaxy. 

I decided, in a moment of sheer laziness, that the view in the 14mm Explore was enough, and I didn’t need the Delos. Observing was supposed to be fun, right? (That’s the excuse I’m providing, and I’m sticking with it.)

UGC 260 (Psc): UGC 260 is not actually that far from NGC 100, and is also a reasonably-bright galaxy; I’m always mystified at some of the stuff that gets missed up there by great observers of the past, and this is one of those objects. This one is 2.0’ x 0.25’, elongated in PA˚ 20. The central third is slightly brighter than the rest of it, and every so often there seems to be a nucleus visible that’s skewed a little bit toward the P edge. It has a 13.5-magnitude star F slightly N it by 2.25’; that star has a double star N of it by 2’, consisting of a 13.5-magnitude star that has a 14.5-magnitude companion to the S by 4”. 3’ N of the galaxy is a 14.5-magnitude star. There’s an asterism N of the galaxy that kind of looks like a tilted F-16 headed toward the P, with a vaguely N-S line of three as the tail and a row of fainter stars just N of the galaxy (including the double and the 14.5-magnitude star N of the galaxy) as the S-most of the swept wings. The S-most star in the “tail” is 8’ N somewhat F the galaxy and is 12th magnitude; it has 3’ N very slightly P it another 12th-magnitude star, and that star has a 10.5-magnitude star 1’ N of it. The brightest star in that F-16 asterism is 7’ NP the galaxy and is magnitude 9.5. The seeing isn’t steady enough for the 7mm, but it does show that the “nucleus” is a 15.5-magnitude star just outside the P edge of the galaxy.

How did I miss PGC 1652, just P UGC 260?

I had the 7mm Nagler in my pocket, and used it rather than jumping down to get the Delos for UGC 260.

It was nearly 3 AM now, and I’d had a night full of wonders. I could’ve stopped there—Dan was dozing in his chair—but the Universe was pressing me to keep going, in the same way that religious or military people feel called by some higher power. I had more to observe, because there was more to observe.

Palomar 2 (Aur): One that wasn’t on my agenda for the night: Palomar 2 in Auriga. I’m more than a bit surprised that I picked this up as easily as I did, but this both brighter and larger than I expected; it’s 1.25’ in diameter, and obviously quite faint and diffuse, but unmistakable in the field. Inside the cluster, on the SP side, is an individual star that’s visible above the background glow of the cluster. 2.25’ F very slightly N of the cluster is a 13.5-magnitude star that has a 15th-magnitude star 0.5’ N of it. 8’ S somewhat F the cluster is an 11th-magnitude star; there’s a 10th-magnitude star S of the cluster by 10’; then N somewhat P the cluster by 6’ is a 13th-magnitude star at the NF end of a squashed narrow trapezoid that is elongated P-F. Due N of the cluster by 14’ is the brightest in an arc of three; that star is 11.5 magnitude, and has F very slightly S of it by 2.25’ a 12.5-magnitude star that has 4’ SF it a 12th-magnitude star. 

Pal 2 was in quite a bad position for me ladder-wise; I had to stop in the middle of the observation for a minute’s rest.

Spurred on by Palomar 2, I swung the scope back south for a globular that was on my list, one that I had seen before in similar conditions but with the smaller 12.5-inch scope. I fully expected it to be my last object for the night.

NGC 1049 (For): After all of my galaxy hunting, it’s odd that I’m ending with globulars, although this one was at least on the agenda. I’ve seen NGC 1049 before under similarly-mediocre conditions and with a smaller scope, but this is probably the better of the two views. I suspect it’s bigger than 0.3’ in diameter, but this far north, that’s about all I can see of it. The cluster does come to a nearly-stellar point in the center. The surrounding field is really barren (probably a function of atmospheric extinction as much as of an actual dearth of stars there); there’s an 11.5-magnitude star due N of the cluster by 7.5’, a 13th-magnitude star P very slightly S of the cluster by 5’, and a 13.5-magnitude star 10’ S very very slightly F the cluster. 16’ S very very slightly P is an 8th-magnitude star, and N somewhat F by 15’ is a 10th-magnitude star that has a 10.5-magnitude star due F it by 3.75’.  We’ll try the 7mm here; it’s gotta be good for something tonight. (I know there are other globulars there; I don’t know that I’ve got the patience for them.) The seeing down there is atrocious right now, like looking across the bottom of a swimming pool. At this magnification, the cluster looks a little bit lumpy, actually; as if there are more stars resolved on the P side.

Adventures in transcription: the auto-transcriber wrote “Fornax Dwarf Galaxy” as “floor next to worse galaxy.” Maybe I just enunciate poorly….

But I noticed, as I was finishing with NGC 1049, that there was another similar (but smaller) spot in the vicinity, one that was clearly non-stellar. Could it be another…?

Fornax 4 (For):
 This one is a real surprise, given how appallingly-low we are in the sky—NGC 1049 is only 11˚ above the horizon, and this second Fornax Dwarf globular is S of it. Using the 8th-magnitude star S very slightly P NGC 1049 as a guidepost; that star has F slightly S by 8’ a tiny fuzzy speck… well, it’s actually not that tiny, relatively; it’s a little under 0.25’ diameter. It seems to have a threshold-level star N very close to it, but it’s jumping around; I’m having that “sparkle vision” effect there. From the cluster SF by 5.5’ is the P-most of a triangle, which is… in the terrible atmospheric extinction down there I’m gonna say that’s 13th magnitude; it has 1.3’ F somewhat S of it an 11th-magnitude star that has 0.75’ S very very slightly P it a 13th-magnitude star. That’s a pretty incredible sighting under the circumstances! It doesn’t look like much, but knowing what it is makes it more than worth the effort; I’ll have to return here with a chart to find the others if I can.

I didn’t know which globular this one actually was until I got home and was able to check Alvin Huey’s Local Group observing guide, and it annoyed me that I didn’t have his guide chart for the Fornax Dwarf (“for next worth,” according to the app) globulars with me at the time, given that I had NGC 1049 on my observing list; that was a distinct lack of preparation on my part. The next time out with the 20-inch, I’ll be ready, as I now have the chart stored on my phone.

It was after 4 AM that I started teardown of the monster scope—six hours since I began my first set of notes, and nine hours after getting the Obsession assembled. I had put in twenty hours’ observing during the three nights of the late September/early October run… not a bad stretch quality-wise, and phenomenal quality-wise (despite the sometimes murky skies). Flat galaxies, galaxy groups, faint globular clusters, planetary moons… I may not have done valuable scientific work, or accomplished something tangible and lasting, but this was my calling. As Carl Sagan had put it, I was the Universe knowing itself.

I had no regrets as I tore down the big telescope for the night; the observing session had reached a natural and fulfilling end, and I still had energy for the drive home. Dan headed out just ahead of me, as I was stowing my table and ladder in the Flex (on opposite sides of the Obsession).

I took a last look around the site, checking for anything we might’ve left behind, and then a final glance at the rising winter stars. There would no doubt be a few more opportunities to stargaze before the rain and clouds broke in the spring, but if I had seen the last of the autumn sky for 2022, it had been a glorious hurrah.


Raga Hemant is a post-monsoon season autumn raga. The first video shows its contemplative aspect, the second a more-virtuosic side. Both performances put into sound the exhilaration of the fall stargazing season. The lead instrument in both is the sarod, a fretless cousin of the sitar.

Expedition to the Barrier Peaks

Three hours west of Carbondale is a zone of extremely-dark night skies, between Poplar Bluff and West Plains, Missouri. On a light pollution map, this corresponds to dark blue and grey zones (Bortle 2 and 3 zones), indicating naked-eye limiting magnitudes around 7 or lower. In the eastern United States, there are only a handful of regions this dark. In contrast, Carbondale proper is only an orange Bortle 5 zone (limiting mag 5.6-5.9, although it’s rarely anywhere near that good), and our dark site (Giant City State Park) is only a green Bortle 4 zone (limiting mag 6.4-ish). Having observed from the Missouri dark zone before, I can attest to the tremendous darkness and the difference between it and the local (Illinois) region. Going from magnitude 6.5 to magnitude 7.0 results in a net gain of about 5000 stars, and a considerable increase in the contrast of the Milky Way—especially the winter Milky Way, which changes from a faint glow to a glittering stream with the contrast gain.

The Mill Creek Retreat sits on the transition between dark blue and grey zones, just northwest of Van Buren, MO. It has a quartet of beautiful cabins, some farm property, and a number of fields, among natural springs, towering limestone bluffs, and the variably-wide Mill Creek itself. The retreat sits well back from the highway (Highway M) and is easy to miss if one doesn’t know it’s there. AASI had an invitation to observe from the retreat after our 2013 expedition, and we’d intended to be back in spring of 2014. Timing didn’t work out, and we ended up waiting until the autumn to make our way west again.

Location of the Mill Creek Retreat relative to the rest of the local area. This is a light-pollution map; the darker the color, the darker the skies. MCR borders between dark blue and grey, the darkest colors represented here. Carbondale puts out as much wasted light as a city five times its size. Kansas City is the blob to upper left.

Jim R—along with Chris R (who couldn’t make it this time), the only other survivor of last year’s expedition—and I made our ways to the retreat on Friday, October 24. We had originally planned to be there earlier in the week—New Moon was on Thursday—but there was a partial solar eclipse on Thursday as well, and it was necessary for AASI to help out at the SIU Department of Physics’ public observing session. So Friday it was.

We met up with Ryan V from the Ozark Skies Astronomy Club; his sister Renata owns the retreat, and had invited us to return after the previous September. Her partner Randy had mowed part of one of the retreat-center fields specifically for our use, and her German Shepherd, Josie, was part of the welcoming committee. (A local friend, Pat, was pleasant company the first two days we were there.)

Friday’s observing session was a blur, beginning just after dark and ending around 3 AM. The fog advanced upon us early, necessitating frequent dryings of the secondary mirror on the 12.5” scope with Jim’s Orion heat gun (essentially a miniature hair dryer) and exposed eyepieces (until I remembered that I had a Kendrick heat rope for eyepieces, which had never been used). My Sky Atlas 2000.0 was soaked to the point that any page touching the plastic tabletop immediately turned transparent with dew; water dripped endlessly from the vanes of my telescope’s spider onto the primary mirror. Difficult conditions in which to observe, beneath a sky that was relentlessly dark and star-flecked.

Friday’s targets were a varied lot. I had intended to spend most of my observing time on this trip observing objects on the Astronomical League’s Herschel II, Flat Galaxy, Arp Peculiar Galaxy, Galaxy Group, and Planetary Nebula observing program lists, but (as seems often to be the case) I spent part of the first night in a bit of an overwhelmed state and lost sight of what I had planned. Thus, an overemphasis on “easy” targets such as the Veil Nebula, the Double Cluster, the Andromeda Galaxy and its two primary satellites, the Ring Nebula, and an assortment of other Messier objects (M #s 1, 77, 74, 33, 42/43, and 37).

All were stunning. One can’t imagine the astonishing sight of the Orion Nebula (M42/43) as seen from a truly dark site—like a giant phosphorescent bat pinned against the darkness of the background sky, the nebula more 3-dimensional than it can ever appear under suburban skies. The Crab Nebula (M1) showed similar 3-dimensionality. I forgot to look for the tiny, faint barred spiral galaxy IC 1296 near the Ring Nebula (M57), a target that has eluded me for two years now (since I first heard of it). The Veil Nebula got at least half an hour of attention, both major arcs displaying astounding filamentary detail, almost as in photographs; additionally, though, the region between the arcs—especially the wedge-shaped component called Pickering’s Triangular Wisp and a series of tiny detached knots of nebulosity—was gloriously detailed and intricate.

The Pinwheel Galaxy (M33) was an extraordinary sight Friday, although better on Sunday night. Friday, the two major spiral arms were plainly visible as denser parts of the galaxy’s vast halo, which was sprinkled with an assortment of even denser knots (most prominently, NGC 604, a star-forming cloud perched next to a 12th-magnitude field star).

Non-Messier targets were fewer Friday night, but still rewarding. NGC 281, the Pac-Man Nebula, was considerably more impressive than my previous observation of it, from AASI’s old site near Pittsburg, IL—on that occasion, Jim Storm expressed his great disappointment with the nebula after having spent some considerable time searching for it. NGC 40, the Bow-Tie Nebula, was a bright blue-grey planetary nebula in Cepheus, while NGC 246, the Skull Nebula (Cetus), was a huge cirrusy circle with a number of faint stars enmeshed within.

While exploring the region around M77, I ended up unearthing a number of other galaxies: the edge-on spiral NGC 1055, complete with dust lane; the close pair NGC 1087 and 1090, and the large, faint, round face-on barred spiral galaxy NGC 1073. I’d seen NGC 1055 several times, but ventured farther afield for the others. In retrospect, I wish I’d spent more time taking notes on these galaxies, and more time searching for others nearby; dozens of other bright-ish galaxies lay within a few degrees of these.

One particular personal highlight of Friday night was “discovering” the dwarf irregular galaxy IC 1613 after several years of searching. IC 1613 is a member of the Local Group, our Milky Way’s immediate neighborhood, at a distance of about 2.38 million light-years (just a bit farther than M31, the Andromeda Galaxy). IC 1613 was little more than a faint 15’ glow in the eyepiece, barely brighter than the background sky, and with no appreciable detail. Jim R. took a look at it as well, verifying that he too could see it. My intention to sketch the galaxy was unfortunately thwarted by the heavy dew, which would have rendered my sketching paper unusable after only a couple of minutes.

Another highlight was made possible by Jim’s owning of a hydrogen-Beta filter, a piece of gear I can’t justify with my current budget. The California Nebula (NGC 1499) is an object that benefits only from the H-Beta filter, a huge strip of emission nebulosity above the “knee” of Perseus. Observing the California Nebula is a frustrating experience for those observers under inferior skies or without the H-Beta filter; under our circumstances, the Nebula was almost easy, its brighter northern rim stretching well beyond the edges of the field in a 24mm 68˚ eyepiece (yielding a field of 1 degree), some of the remaining nebulosity hanging down like a shimmery gauzy curtain, disappearing indistinctly into the background sky.

We spent the last forty minutes of our Friday night-Saturday morning observing session searching—with the same setup as used on the California Nebula—for the elusive Horsehead Nebula (Barnard 33, silhouetted against emission nebula IC 434) in Orion. Eventually using a number of different eyepieces (but always the H-Beta filter), we caught glimpses of NGC 2024 (the Flame Nebula) and some of the tiny fuzzy spots around stars embedded within the nebulosity (such as IC 433 and NGC 2023). Only on fleeting glimpses was a dark shape suspected against a barely-susceptible brightening of the background; neither Jim nor I was willing to say that we’d seen the Horsehead for absolute certain.

Fatigued after a long day and somewhat beaten by the fog and its effects on our gear, we closed things down at 3 AM, leaving telescopes and binoculars set up (but covered) and removing only those items from the field that might be damaged from excessive exposure to the fog and cold.

In the morning, we returned to the field to check out the effects of the fog on our gear. Everything was drenched. Jim’s optics were still fogged up; my primary mirror, which I had spent a fair amount of time blotting dry with Kimwipes (dipping the corner of the wipe into the dewdrops to absorb them), was covered edge-to-edge with dew. Despite the density of the fog, I was still surprised by how much had settled on the mirror. Checking the rest of the gear, I left the primary mirror uncovered, put the nylon bag around the secondary, pushed the scope out of the Sun’s path, and took off the Telrad. Having set our gear to let the night’s dew accumulation out of the optics, Jim and I went out to get something for breakfast.

When we returned to close up the gear for the day, I was appalled to discover that I hadn’t pushed the telescope far enough from the Sun’s path—the nylon bag on the secondary mirror had melted from the concentration of ambient light on it from the primary. Even worse, the melted nylon had left a film on the secondary. After a few choice words and throwing something—I don’t remember what—I decided that there was nothing worse that could happen to the mirror and set about cleaning it.

Carrying my optics-cleaning gear with me was suddenly a really good idea; I was fortunate to have room for it in my gear kit. I had no distilled water, so drinking water would have to do. And it did surprisingly well—after a couple of careful minutes with water, cotton, and Kimwipes, I managed to get the secondary clean enough to restore my hope for the rest of the trip. Jim helpfully offered to keep quiet about the incident for only $10 per month.

Views of the observing field, Saturday morning.

Saturday was the most productive night of observing of the trip. We were back at the field before sunset this time. It felt odd wandering around with winter gear on during the evening while it was still 80 degrees; temperatures plummeted quickly to the mid-50s, especially as the fog started rolling in. Fortunately, there seemed to be no ill effects to the secondary mirror from the morning’s misadventure, and after a tweak to the collimation, things were rolling. Including the fog.

Revisits to NGCs 40 and 246 were early observations, Ryan choosing these as parts of his work on the Herschel 400 I list. In keeping with the early evening planetary nebulae, I also grabbed IC 5148 in Grus, the Spare Tyre Nebula, one of the most photogenic planetaries; it was much more difficult in the eyepiece, however, as the southern horizon was a bit cruddy with humidity and some glare from Van Buren that was reflecting off of said humidity.

It was then back to the Aquarius/Capricornus region, with a reobservation of Palomar 12* in Capricornus (first observed 9/29 at Giant City) starhopping to the fainter globular from M30, a beautiful bright globular with two star chains trailing to the north, giving M30 the appearance of a miniature Sputnik. Palomar 12 was, by contrast, merely a fleeting 2-3’ glow just north of a tiny triangle of 11th-12th magnitude stars.

Other reobservations followed: NGCs 6923 and 6925 in Microscopium*, two interesting galaxies tucked away in a forgotten corner of the sky (at least for those of us in the Northern Hemisphere). I started here by starhopping to 6925 from Alpha Microscopium, and then from 6925 to 6923—the TriAtlas app on the iPad was vital, as always, for the starhopping. There was a great deal of fog already, so it was frequently necessary to stop and dry the secondary mirror. I was smarter this night, keeping the Kendrick dew rope attached to the eyepiece to keep it free of dew.

Two Hickson Compact Galaxy groups featured in the evening’s list—Hicksons 88 and 90. Hickson 88 was much the more difficult of the two, and will probably be impossible from Giant City (not that I won’t try!).



MOON: 3 days, set by observation time


TRANSPARENCY: 8, later 3

NELM: 7.1

WEATHER CONDITIONS: temps in 50s-60s, later heavy dew/fog


NGCs 6978/6977/6975 (Hickson 88; Aqr)—just S of 4 & 5 Aqr—at least three v. difficult glows—halfway between 5 Aqr and a 9/10th star—4 & 5 form crushed trapezoid with two 9/10 field stars—three small faint glows—less than 1’ each—brighter, larger (1’?) one [6978] closer to 5 Aqr—0.5’ core w/no stellar nucleus—fades gradually into background—PA tough to tell; maybe 45˚ [125]?—S and slightly P of that one is next-brightest [6977]—little rounder than first—no concentration—just S, slightly P of that one is most difficult [6975]—much less than 1’—averted almost necessary for all three—pair of 11th stars just S of group by 5’—would have swept over without accurate charts

Hickson 90* was also a reobservation of a very nice object: four fairly easy galaxies (two of them closely-interacting) in a nice starfield.

A further galaxy group was the next target: the NGC 6928 trio in Delphinus*. NGC 6928 is the brightest in the trio; NGC 6930 is the second-easiest, with the very difficult 6927 still proving elusive. I think I managed 6927, but it was very much a fleeting averted-vision object, requiring a larger scope.

With Capricornus sinking quickly behind the hills, I made an unplanned detour up toward the Helix Nebula, NGC 7293. A pretty easy target from Giant City, the Helix was amazingly bright from the retreat center. Half the size of the Full Moon, the Helix showed its annular structure clearly, with numerous stars sprinkled across its face and the two “ruptured” ends displaying ragged termini. A stunning sight.

With Cetus now well above the horizon, a number of potential targets hove into view. One of the most interesting—and one I’ve been desperate to pick up—is the Burbidge Chain, a string of tiny, faint galaxies just northeast of the giant low-surface brightness spiral galaxy NGC 247.

NGC 247, south of Beta Ceti, was a snap to pick up, a long (12’), ghostly smear brighter on the south end, where it terminates around a brighter field star. The Burbidge Chain, however, resisted fifteen minutes’ worth of attempts at ferreting it out of the background. Two things worked against me: the poorer seeing down low in the south, and the gradual dewing of the secondary, made worse by keeping the scope aimed low to the ground. After fifteen minutes and multiple eyepieces (using my usual 14mm and switching among a Meade 24mm SWA [68˚], a 6mm Radian [60˚], and a 4.8 Nagler [82˚]), I was still unable to summon forth the Burbidge Chain. It’s doubtful I’ll get to skies much darker, so the best I can hope for is better dew conditions or a bigger scope. The latter isn’t likely anytime soon.

It’s not really possible to observe this region without stopping at NGC 253, so off we went. (Ryan had been looking at NGC 288, a nearby globular cluster.) NGC 253 is a stunning sight in any optics, and it was especially so in the 12.5” from such a dark site. A huge galaxy—the “anchor” galaxy of the nearest major galaxy cluster (the Sculptor Group)—NGC 253 crosses the entire width of a medium-low power eyepiece. It’s one of the most mottled of galaxies, displaying lots of visual texture even at low power, and a scattering of field stars across the galaxy’s face. This one is gasp-worthy when it creeps into the eyepiece field!

Even lower in declination, and also large and flat, is the less-known NGC 55. As low as it was in the murk, NGC 55 still rewarded the minute or so of searching it took to pick it up. The galaxy is nearly as large as NGC 253 but dimmer; it has two large core sections connected by a thin smear of starglow. From lower latitudes, the galaxy is an awesome sight; from Missouri, it was impressive but somewhat faint and subdued. Well worth the time and the search.

By this point in the evening, the sky was starting to become less transparent. It was fairly apparent we were going to have a truncated night’s observing, so the uses of the dryer and the choices of targets required more selectivity.

Far south now, toward an object that has vexed me for years: NGC 1049, a globular cluster in the Fornax Dwarf Galaxy. The FDG is, as is IC 1613, a member of the Local Group, and a devilishly-difficult object to observe directly due its poor star density. When first discovered—on a photographic plate—it was though to be a defect in the plate. At best, it can be seen as a mere brightening of the sky background. This night, the FDG was swamped by the humidity-brightened southern sky.

The FDG does have a system of globular clusters, though, and six of these can be picked up in telescopes of various sizes. Smaller scopes can be used to find NGC 1049, the brightest of these globulars; overall, four of them would have been possible in the 12.5”, but the conditions wouldn’t support any but NGC 1049, which flickered in and out of view with the 14mm eyepiece.


NGC 1049 (For)—in middle of Fornax Dwarf—tough find—horizon much less transparent by now—not easily visible at all—lots of ground fog—like a fuzzy star—12th? 13th? mag.—only a few arcseconds diameter—point source superimposed/v. close next to it?—almost like planetary nebula—CC “forget it”—15”—on S side of field is bright (8th) star—pair of 10th stars to NF side—cluster coming & going—“most definitely there”

Another of my personal bêtes noire conquered, and time was growing short. The sky was now being wiped out by overhead fog in various spots; it was necessary to find the open “sucker holes” between the patches of fog.

North and a bit east of NGC 1049 is a large spiral galaxy, NGC 1097. Among the many galaxies in Fornax, NGC 1097 is one of the brightest and largest. And so it was:


NGC 1097 (For)—about 15’ N of little triangle of 8th/9th stars—triangle at widest side is 7’ long—galaxy is v. bright—long halo, 4-5’ by half that—v. bright core, almost blazing—core about 1.5’ round—averted stretches halo to 6’—10’ to NP is 9th star—amazingly-large galaxy—to F side is pair of 11th stars about 10’ away—same distance to P side is pair of 10th/11th stars—no NGC 1097A visible

By this point, only a stripe stretching from Taurus to Pegasus remained. I swept back over to NGC 7479, a large face-on barred spiral in Pegasus that I’ve observed many times. It’s always an excellent target; on this occasion, not only was it the brightest I’d ever seen it, but the bar and brighter spiral arm were plainly apparent amid the glow of the galaxy’s halo.

Over to Aries now, and another couple of worthy reobservations: the 1 Arietis Group and NGC 772. The 1 Ari Group consists of a number of bright-ish galaxies and several smaller, more difficult ones, but is not a physically-bound, actual cluster of galaxies. I managed five of them tonight: NGCs 697, 680, 678, 691, and (most difficult) 694. These form a wide checkmark around the gorgeous double star 1 Arietis, a pair of tiny white beacons nearly in contact. I took notes only to keep track of which of the galaxies I’d seen. Detailed notes will have to wait until later.

Final target for Saturday, the stars being swallowed up by the fog: NGC 772. A large (4’ x 3’) spiral galaxy with a brilliant core and an extended halo—the core being considerably offset from the center of the halo—NGC 772 is also one of Arp’s peculiar galaxies. NGC 770, an elliptical satellite to 772, was either not visible or not apparent enough that I noticed it during my quick glance at 772.

And that was the end of our observing Saturday evening-Sunday morning. One more night to grab photons of such faintness—it would have to pay off as well as the previous two nights.

Sunday evening, waiting for darkness.

Your humble Australopithecene and Ryan V., our host from the Ozark Skies Astronomy Club.

Sunday evening’s conditions turned out to be almost identical to Saturday’s—right down to the fog rolling in at about 9 PM. This night, though, the fog was a little less obtrusive, staying lower to the ground and leaving the sky unobscured. At this end of the weekend, though, fatigue was setting in. I knew that it would probably be the shortest night’s observing of the trip, regardless of the sky conditions.

I stayed away from the easier targets, registering only two Messiers this night. Galaxies were the primary subjects; reobservations of Hickson 88 and IC 1613 helped verify my previous observations of those two objects. IC 1613 seemed to show a touch more detail than on Saturday night, with the slightest condensation in the north-following side of the galaxy, but this was a very subtle detail. I also reobserved the galaxies in the region around 1 Arietis, hoping to pick up IC 167 (a very photogenic barred spiral, but brutally faint). This extra galaxy, however, proved to be more stubborn than I.

Pisces was a prime area for searching, and I checked out impressively-bright and large M74 again before sweeping over to the constellation’s “southern chain” for the NGC 470 trio (NGCs 470, 467, and 474, an interacting group). I had seen these three a few years ago at the Williamson County remote-controlled aircraft flying field, and sketched them then; they make a fine trio for a moderate-sized scope at medium-low power.

Two noteworthy bright galaxies lie near the 470 trio. NGC 488 is a large, bright Sa spiral galaxy with beautiful, tightly-wound arms (alas, only detectable in photographs); the galaxy is impressive in moderate-sized scopes and quite easy even in smaller optics. Also nearby is NGC 520, a pair of galaxies colliding and merging into one; the current configuration of the two looks somewhat like a honeysuckle flower (as noted in an issue of Deep Sky magazine). NGC 520 looks distinctly peculiar, although the peculiarity is somewhat hard to pin down at the eyepiece without a larger scope. It was an easy target otherwise.

Farther north in Pisces—almost as far north as you can get in Pisces, up by the Pisces-Andromeda border—are several clumps of galaxies that are part of the Perseus-Pisces Supercluster. One of these, the NGC 383 Group, was a particularly intriguing target (I should have investigated the nearby NGC 507 group, which was on the same TriAtlas chart as the NGC 383 group, but for reasons I can’t fathom I completely overlooked it).

The NGC 383 Group consists of a wide V-shaped “wild duck” formation of some ten galaxies within a square degree, of which six were readily-apparent: NGCs 374, 379, 380, 383, 385, and 384. This group was one of the real highlights of the entire trip; I observed it for more than twenty minutes, pushing the scope to keep the galaxies centered in the eyepiece. Beautiful and fascinating! Had I not felt rushed, I would have gone galaxy-hopping from the 383 Group, through bright NGCs 404, 407, and 410, and over to the 507 Group. This is a major priority for future observations.

At the other end of the Perseus-Pisces Supercluster—and another long-time nemesis—is the Perseus I Cluster, centered around NGCs 1272 and 1275 (the latter also the radio source Perseus A). It took an annoyingly-long time to find the field, but was well-worth it when I did—a half-dozen small glows were apparent within the 42-arcminute field of the 14mm eyepiece. The brightest were NGCs 1272 and 1275; I also identified NGCs 1270, 1273, 1278, and 1282 in the field, and suspected several more. This one, too, got a long stare: galaxies are such vast and magnificent objects that to see clusters of them boggles the mind. The NGC 1275 Group is also known as Abell 426, and is of Abell’s richness class 2 (between 80-129 member galaxies). Another object I need to give more time to… at the very least, these groups need a sketch to be done, a family portrait as seen by an observer some 240,000,000 light-years away.

By this hour, the fatigue was tangible. Even with the entire panoply of the sky to choose from, and a huge list of potential targets in a binder on my portable table, I was having a hard time keeping focused on observing. The sky was slightly-less clear than earlier, and the seeing had visibly degraded at the eyepiece (from an 8 to a 6 or so; the 6mm Radian was now too much power). Jim seemed to have had enough as well, and Ryan had had to go home earlier, as he had to work Monday. Not wanting to give up so easily, I pressed on.

I hadn’t intended to search for Maffei 1 on this trip, as I assumed that the richness of the Milky Way in the grey-zone sky would make star-hopping too difficult. Having found the galaxy from a grey zone in a 17.5” scope, though, I still had a faint memory of how to find it—and I had the TriAtlas app, rather than having to rely on the Harald-Bobroff Atlas as I did when I found the galaxy in ’99. Start at the Double Cluster, hop to Stock 2, and then north….

It was astoundingly easy. I had no expectation of finding the right location, but the hop to the small tadpole-shaped asterism—actually the cluster Czernik 11—framing the galaxy was quick and painless, a testament to the utility of a really detailed chart. A few fleeting glimpses of haze in the exact location of the galaxy would have to suffice; the sky was turning to mush quickly, and I doubted the 6mm Radian would’ve provided a better view. Simply knowing that I could still find the galaxy was enough; I could try anytime this fall or winter. Maffei 1 was only discovered in the 1970s, yet it was surprisingly obvious even under sub-par seeing.

Nearby are three other galaxies, all brighter by varying degrees. NGCs 185 and 147 are Local Group members, elliptical satellites of the Andromeda Galaxy, while NGC 278 is a small SA spiral galaxy about 20 times farther (yet much the brightest of the trio). These are all located south of Cassiopeia’s ‘W’, around an asterism I call “The Shepherd’s Crook” for obvious reasons (Pi, Omicron, Xi, and Nu Cass, and Struve 16).

NGC 185 is pretty obvious in the eyepiece, and quite large. NGC 147 is rounder but much fainter/lower in surface brightness, and can be very difficult in light-polluted conditions. Here in Missouri, though, both were quite easy to sweep up in the eyepiece; NGC 147 here looked as bright as NGC 185 did back at our Crab Orchard site. NGC 278 was considerably easier still, but smaller than either of the two ellipticals. There was no question from the eyepiece that 278 was a spiral, displaying a nearly-stellar nucleus and bright core inside a very small halo.

Time for one more object—not enough energy for more. We had tried throughout the weekend to catch M33 with the naked eye; with averted vision, it might have appeared for a total of two seconds the whole weekend. It had been a stunning sight Friday night in the eyepiece; never a favorite of mine—in part because I’d rarely had such dark skies with such a great telescope—I’d never really given it as much time as it deserved.


In the 24mm SWA, M33 more than filled the field (1˚ TFOV). Its spiral arms weren’t merely obvious, they were impossible not to see—a broad, sweeping ‘S’ pattern, brighter than the galaxy’s background halo. Both the arms and the halo were dotted with condensations and knots of star clouds and nebulae; I counted eight distinct patches among the arms and halo. Although too weary to try to match them up with the symbols and numbers on the TriAtlas chart, I managed to keep my eye to the eyepiece until the seeing began to wash them out… about fifteen minutes looking through the 24mm, its twist-up eyeguard digging into my face, marveling at the detail visible in one of the Milky Way’s nearest neighbors.

The clouds had begun to arrive, right on schedule, slamming the door shut on the 2014 AASI/OSAC expedition. When a star party ends, you don’t turn out the lights—you turn them on. (Cue Don Meredith.) Mirrors and corrector plates were covered, not to see starlight again in October. A thoroughly-soaked Sky Atlas 2000.0 was folded back into its cover, an iPad was taken to the truck, eyepieces were stowed. The observing chair that I had sold Ryan would remain in the company of our other gear until morning. The observers drove from the field, leaving tables, chairs, telescopes, and binoculars—some sort of StarPartyHenge—to ride out the remains of the night.

The view from the porch of our cabin, looking over the barn and the Mill Creek itself.

Our cabin (the 2-story in the middle).

Josie, who stood guard over our cabin when we were gone (and even while we were there).

In the morning, we collected our remaining gear, emptied the cabin, loaded our vehicles, bid goodbyes to Renata and Randy (and Josie), and went our separate ways. Our next observing sessions would be under lesser skies, but having found a number of interesting new targets, it would be interesting if those observations would be repeatable from our usual spots. An additional number of targets missed—or not searched for—would also provide plenty of further observing possibilities. As always, the number of potential subjects for observation and study is limitless.

*objects with observations to be published in other posts